
Journal of Hydrology 517 (2014) 836–846
Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier .com/locate / jhydrol
Real-time multi-step-ahead water level forecasting by recurrent neural
networks for urban flood control
http://dx.doi.org/10.1016/j.jhydrol.2014.06.013
0022-1694/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +886 2 23639461; fax: +886 2 23635854.
E-mail address: changfj@ntu.edu.tw (F.-J. Chang).
Fi-John Chang a,⇑, Pin-An Chen a, Ying-Ray Lu a, Eric Huang b, Kai-Yao Chang b

a Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
b Hydraulic Engineering Office, Public Works Department, Taipei City Government, Taipei 11008, Taiwan, ROC

a r t i c l e i n f o s u m m a r y
Article history:
Received 27 December 2013
Received in revised form 10 June 2014
Accepted 11 June 2014
Available online 20 June 2014
This manuscript was handled by Andras
Bardossy, Editor-in-Chief, with the
assistance of Purna Chandra Nayak,
Associate Editor

Keywords:
Artificial neural networks (ANNs)
Nonlinear autoregressive network with
exogenous inputs (NARX)
Gamma test
Flood forecast
Floodwater storage pond (FSP)
Urban flood control
Urban flood control is a crucial task, which commonly faces fast rising peak flows resulting from urban-
ization. To mitigate future flood damages, it is imperative to construct an on-line accurate model to fore-
cast inundation levels during flood periods. The Yu–Cheng Pumping Station located in Taipei City of
Taiwan is selected as the study area. Firstly, historical hydrologic data are fully explored by statistical
techniques to identify the time span of rainfall affecting the rise of the water level in the floodwater stor-
age pond (FSP) at the pumping station. Secondly, effective factors (rainfall stations) that significantly
affect the FSP water level are extracted by the Gamma test (GT). Thirdly, one static artificial neural
network (ANN) (backpropagation neural network-BPNN) and two dynamic ANNs (Elman neural
network-Elman NN; nonlinear autoregressive network with exogenous inputs-NARX network) are used
to construct multi-step-ahead FSP water level forecast models through two scenarios, in which scenario
I adopts rainfall and FSP water level data as model inputs while scenario II adopts only rainfall data as
model inputs. The results demonstrate that the GT can efficiently identify the effective rainfall stations
as important inputs to the three ANNs; the recurrent connections from the output layer (NARX network)
impose more effects on the output than those of the hidden layer (Elman NN) do; and the NARX network
performs the best in real-time forecasting. The NARX network produces coefficients of efficiency within
0.9–0.7 (scenario I) and 0.7–0.5 (scenario II) in the testing stages for 10–60-min-ahead forecasts
accordingly. This study suggests that the proposed NARX models can be valuable and beneficial to the
government authority for urban flood control.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Urban flood control is a crucial and challenging task, particu-
larly in developed cities. Urban floods are flashy in nature mainly
due to severe thunderstorms and occur both on urbanized surfaces
and in small urban creeks, which deliver mass water to cities. On
account of more impervious areas resulting from the rapid urban-
ization in metropolitan areas, less water infiltration has resulted in
an increase in the flow rate and the amount of surface runoff over
the last decades. Taiwan is located in the northwestern Pacific
Ocean where subtropical air currents frequently introduce
typhoons and convective rains. The urban flood hydrographs in
Taiwan typically have large peak flows and fast-rising limbs in a
matter of minutes, which could cause serious disasters. For exam-
ple, Typhoon Nari brought massive rainfalls at an astounding level
of 500 mm/day on September 17th in 2001, which resulted in 27
deaths, inundations at some stations of the Taipei Metro System,
and countless economic losses. The heavy rainfall event on June
12th in 2012 brought astonishing rainfalls with a cumulative
amount of 54.1 mm/hr, which directly resulted in quick and wide
surface flooding such that the transportation system collapsed in
most of the southern Taipei City. It appears floods cannot be pre-
vented, but planning emergency measures through flood manage-
ment might mitigate disastrous consequences.

In response to the flood threat to residents and property, the
Taipei City Government has long-term endeavored in developing
flood control-related infrastructures, such as increasing levee
heights and enhancing sewerage systems, and urban inundations
have been significantly mitigated and controlled in recent years.
As a result, the main threat to the city turns out to be the floodwa-
ter inside the levee system. A surface inundation will inevitably
take place if surface runoff exceeds the capacity of a storm drain-
age system. To tackle this problem, pumping stations play an
important role in flood mitigation at metropolitan areas and are
principal hydraulic facilities built to manage internal stormwater
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Fig. 1. Architecture of the study flow. �Time span of rainfall affecting the rise of FSP
(floodwater storage pond) water level.
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flows at places under the condition that gravity drainage cannot be
achieved. The operation of a pumping station highly depends on
the water level information of its floodwater storage pond (FSP).
Within the catchment of a pumping station, surface runoff will
drain to its FSP for storage and subsequent disposal through grav-
ity drainage. When the water level of the FSP reaches the start level
of duty pumps, the pumps will be activated according to operation
rules for discharging the stored floodwater into the nearby river.
For floodwater control management during heavy rainfall or
typhoon events, it is imperative to construct an efficient and accu-
rate model to forecast many step-ahead FSP water levels by
utilizing the information of the current FSP water level and the
rainfall measured at the neighboring rainfall gauging stations of
the pumping station. The proposed model is expected to provide
sufficient response time for warming up the pumps in advance
for enhancing secure pumping operations and urban flood control
management.

Artificial neural networks (ANNs) possess the ability to approx-
imate nonlinear functions, and therefore become useful tools for
handling water resources problems such as rainfall forecasting
(Hung et al., 2009; Nasseri et al., 2008), stream flow forecasting
(Akhtar et al., 2009; Besaw et al., 2010; Chen et al., 2013; Nayak,
et al., 2013; Sudheer et al., 2008; Toth, 2009; Sahoo et al., 2009),
water level forecasting (Alvisi et al., 2006; Makarynskyy et al.,
2004; Ali Ghorbani et al., 2010), and applications in urban drainage
systems (Bruen and Yang, 2006; Loke et al., 1997; Chang et al.,
2008; Chiang et al., 2010). Signal delays play an important role in
neurobiological information processing. This concept has led to
the development of dynamic neural networks. Recurrent neural
networks (RNNs) that facilitate time delay units through feedback
connections are computationally more powerful and biologically
more plausible than other adaptive approaches such as feedfor-
ward networks, and thus have attracted much attention for years
(Assaad et al., 2005; Chang et al., 2012; Coulibaly and Baldwin,
2005; Coulibaly and Evora, 2007; Ma et al., 2008; Muluye, 2011;
Serpen and Xu, 2003). RNNs can be trained to learn sequential or
time-varying patterns and are considered very effective in model-
ing the dynamics of complex hydrological processes with accurate
forecasts; consequently their capability in modeling multi-step-
ahead forecasts in highly variable time series is investigated. As
known, multi-step-ahead forecasting is much more complex to
deal with than one-step-ahead forecasting (Sorjamaa et al.,
2007), and we believe ANNs, especially recurrent ones, can play
an important role in tackling these complex tasks.

The greatest success in flood forecasting is commonly achieved
on large rivers. Nevertheless, flash urban floods associated with
heavy thunderstorms in cities are often very uncertain and are
more difficult to predict due to complex dynamic phenomena
involved. Many studies demonstrated the predictability of stream-
flow through soft computation methods (Nayak, et al., 2004; Maity
and Kumar, 2008) while only few papers investigated the predic-
tion performance of inundation and/or sewerage systems in urban
areas (Chiang et al., 2010). In this study, we intend to investigate
the reliability and accuracy of short-term (10–60-min) forecast
models for the floodwater storage pond (FSP) of a sewer-pumping
system in Taipei City, Taiwan. The multi-step-ahead FSP water
level forecast models for flood pumping control during heavy rain-
fall and/or typhoon events are tailored made through a static ANN
(the back-propagation neural network-BPNN) and two dynamic
ANNs (the Elman NN; the nonlinear autoregressive with eXoge-
nous input-NARX network). Consequently, the comparison results
of these three ANN models are evaluated for the effectiveness of
recurrent connections. The forecasting system is designed to antic-
ipate the occurrence of flooding and to take measures necessary to
reduce flood-induced losses. The study will give a boost to the
efforts for urban flood disaster management and strengthen the
Taipei City Government with more proactive disaster
preparedness.
2. Methodology

In this study, various ANNs are used to make water level fore-
casts for representing the behavior of the rainfall-sewer flow pro-
cesses in storm events. Flood levels can be forecasted on the
basis of (a) rainfall data; (b) previous water levels; and (c) a com-
bination of both data sets. We adopt three ANNs coupled with sta-
tistical techniques to construct real time multi-step-ahead FSP
forecast models. The implementation procedure is shown in
Fig. 1. The time span of rainfall affecting the rise of FSP water level
is first identified by the correlation analysis. Next the Gamma test
(GT) is applied to extracting effective rainfall factors from all pos-
sible rainfall-related input combinations. One static (BPNN) and
two dynamic (Elman NN and NARX network) neural networks
are proposed to construct multi-step-ahead FSP water level fore-
casts for two scenarios (w/ and w/o current FSP water level infor-
mation). Finally, these constructed ANN models are evaluated by
performance criteria. The methods used in this study are briefly
addressed as follows.

2.1. Gamma test (GT)

The GT, presented by Agalbjorn et al. (1997) and Koncar (1997),
is a data analysis technique for assessing the extent to which a
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given set of M data points can be modeled by an unknown smooth
non-linear function. The Gamma statistic (C) is an estimate of the
model output’s variance that cannot be accounted for through a
smooth data model. Performing a single GT is a fast procedure,
which can provide the noise estimate (C value) for each subset
of input variables. When the subset produces its associated C value
closest to zero, it can be considered as ‘‘the best combination’’ of
input variables. Several studies discussed about the GT theory
and its applications in time series forecasting (Durrant, 2001;
Tsui et al., 2002). Lately, research findings indicate it is suitable
and effective to combine ANNs with the GT for identifying non-
trivial input variables and thus reduces the input dimensions as
well as produces precise outputs of ANNs (Chang et al., 2013;
Moghaddamnia et al., 2009; Noori et al., 2011). Therefore, ANNs
combine the GT to determine the representative rainfall gauging
stations affecting the FP water level in the study catchment.
2.2. Backpropagation neural network (BPNN)

The BPNN is one of the most popular ANNs (Rumelhart, 1986). It
belongs to a typical three-layered static feedforward neural net-
work, which is comprised of multiple elements including nodes
Fig. 2. Architectures of (a) the BPNN, (b) the Elman NN, and (c) the NARX network.
and weight connections (W and V) that link nodes. The network
is divided into an input layer, a hidden layer and an output layer.
Fig. 2(a) shows the structure of BPNN. In this study, BPNN is
trained by the Levenberg–Marquardt back propagation algorithm
based on the model output (z(t + N)) and observed data (d(t + N)),
and the transfer functions of hidden and output layers are of sig-
moid and linear types, respectively.

2.3. Elman neural network (Elman NN)

The Elman NN (Elman, 1990) is a three-layer RNN with internal
time-delay feedback connections in the hidden layer. Each input
neuron is connected to a hidden neuron, where each hidden neu-
ron has its corresponding time-delay unit. The structure of the
Elman NN is shown in Fig. 2(b). Basically, a recurrent connection
allows its time-delay unit to store the information of this hidden
neuron as an additional input to all hidden neurons at the next
time-step. Therefore, the Elman NN has an inherent dynamic mem-
ory given by the recurrent connections of the time-delay units, and
its output depends not only on the current input information but
also on the previous states of the network. In this study, the Elman
NN is also trained by the Levenberg–Marquardt back propagation
algorithm, and the transfer functions of hidden and output layers
are of sigmoid and linear types, respectively.

2.4. Nonlinear autoregressive with eXogenous input (NARX) network

The NARX network is a recurrent network, which is suitable for
time series prediction (Chang et al., 2013; Jiang and Song, 2011; Lin
et al., 1998; Menezes Jr. and Barreto, 2008, Shen and Chang, 2013).
Fig. 2(c) shows the architecture of the NARX network used in this
study. The NARX network consists of three layers and produces
recurrent connections from the outputs, which may delay several
unit times to form new inputs. Therefore, this nonlinear system
for N-step-ahead forecasting (N P 1) can be mathematically repre-
sented by the following equation:

zðt þ NÞ ¼ f ½zðt þ N � 1Þ; . . . ; zðt þ N � qÞ; UðtÞ� ð1Þ

where U(t) and z(t + N) denote the input vector and output value at
the time step t, respectively. f(�) is the nonlinear function, and q is
the output-memory order. There are two input regressors: the
regressor z(t + N � i) (i is 1 to q) plays the role of an autoregressive
model while the other one, U(t), plays the role of an implicit exog-
enous variable in time series.

There are two ways to train the NARX network. The first mode is
the Series–parallel (SP) mode, where the output’s regressor in the
input layer is formed only by the target (actual) values of the sys-
tem, d(t).

zðt þ NÞ ¼ f ½dðt þ N � 1Þ; . . . ; dðt þ N � qÞ; UðtÞ� ð2Þ

The other alternative is the Parallel (P) mode, where estimated
outputs are fed back into the output’s regressor in the input layer,
which can also be mathematically represented as Eq. (1). In prac-
tice, when forecasts are conducted for more than two-step-ahead
(N > 1), the q antecedent actual values (d(t + N � 1), d(t + N � 2),
. . . , z(t + N � q)) are future data that cannot be obtained at current
time. Bearing this consideration, the NARX network is trained in P
mode with imperfect information and retains similar characteris-
tics of input–output patterns in the testing stages, and therefore
the constructed NARX network can maintain similar capability of
real time multi-step-ahead forecasts in both training and testing
stages. In this study, the NARX network is also trained by the
Levenberg–Marquardt back propagation algorithm, and the
transfer functions of hidden and output layers are of sigmoid
and linear type, respectively. Despite this important property
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(recurrent connection) of the NARX network, its feasibility as a
nonlinear tool for time series modeling and forecasting has not
been fully explored yet.
3. Applications

3.1. Study area and dataset

Taiwan, an island located in the subtropical zone of the North
Pacific Ocean, is covered with mountainous terrains and steep
landforms. Taipei City, situated in the Taipei Basin of northern
Taiwan, is surrounded by the Danshui River whose narrow estuary
makes it difficult to discharge water effectively from the city.
Consequently, the high levees along the Danshui River have been
built to prevent outer flood into the city with a return period of
two-hundred-year flood protection standard. Typhoons and/or
heavy rainfall events are usually coupled with intensive rainfalls
and thus easily cause urban flooding within a few hours, even
within a few minutes, in Taipei City. Because of the high levees,
the main threat to the city now turns out to be the floodwater
inside the levee system. Therefore, pumping stations play an
important role in managing internal stormwater flows for urban
flood control. The Yu–Cheng catchment, located in southeastern
Taipei, is selected as the study area (Fig. 3). There are six rainfall
gauging stations (R1–R6, denoted as red dots in Fig. 3). Although
station R2 is out of the catchment, it still belongs to a sewerage
system that diverts floodwater to the Yu–Cheng pumping station
and the Keelung River. There also exist a number of water level
gauging stations in this study catchment. However, the malfunc-
tions of water level gauges caused by their collisions with
unknown objects and siltation in sewerage systems raise the
difficulty in the maintenance of water level gauges and their on-
line monitoring. The water level data collected from the sewerage
system are neither stable nor accurate, which means the FSP water
level forecast models for the Yu–Cheng Pumping Station would
Fig. 3. Location of the Yu–Cheng catchm
mostly rely on the rainfall information retrieved from its neighbor-
ing rainfall gauging stations.

The Yu–Cheng catchment occupies an area of about 1627 ha
and owns the biggest drainage system in Taipei City. The Yu–Cheng
Pumping Station was built in 1987 to drain or pump the internal
stormwater flows into the Keelung River, a chief tributary of the
Danshui River, and it was considered the most advanced and the
largest pumping station in Asia in the 1980s. The pumping station
is currently equipped with 11 pumps reaching a total pumping
capacity of 234.1 cms, and the operation of the pumping station
highly depends on the FSP water level information. If the FSP water
level rises up to the warning level (1.8 m) during heavy rainfall or
typhoon events, pumps are activated with a 3-min warm up. Then
stormwater starts to be pumped from the FSP into the Keelung
River when the FSP water level reaches the start level (2.2 m).
The start level is the lowest water level designed for the start of
stormwater pumping as well as for the prevention against the idle
running of pumps to avoid pump damage. These 11 pump units
operate independently and maintain a sequential operation
according to the laddered FSP water levels during typhoon or
heavy rainfall periods. This means the pumping operation begins
with one pump unit, and only one pump unit, instead of all remain-
ing pump units, will join the operation at a time if the next higher
rung of the laddered water levels is reached. On the contrary, run-
ning pumps will be shut down sequentially as the FSP water level
decreases to the next lower rung. The operational procedure of the
Yu–Cheng Pumping Station is quite different from those of Hong
Kong, Tokyo or Singapore, where all the pump units are activated
at the beginning if the FSP water level exceeds the start level, then
the pump units stop running as the FSP water level drops to the
stop level (DSD, 2000; PUB, 2013; Tamoto et al., 2008). It suggests
that the pumping operation in Taipei City is much more sensitive
to the fluctuation of FSP water level than those of big cities in
Monsoon Asia.

Data of FSP water levels and rainfall at stations R1–R6 were
collected with a temporal resolution of 10 min from 13 typhoon
ent and rainfall gauging stations.
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and heavy rainfall events during 2004 and 2013. A total of 1985
datasets are used for constructing forecast models in this study,
and the numbers of datasets allocated into training, validation
and testing stages are 826 (from 6 events), 651 (from 3 events)
and 508 (from 4 events) accordingly. Such allocation is made to
maintain similar statistic characteristics in these three datasets
in consideration of the summary statistics of the 13 events shown
in Table 1. In addition, the weighted average rainfall (Ravg) over the
Yu–Cheng catchment is computed by the Thiessen polygon method
and is also considered as a potential input to the forecast models.
Furthermore, because the original FSP water level is indeed
affected by the operation of pumping units. The original FSP water
levels were recovered prior to model construction according to a
recovery equation (provided by the Taipei City Government) that
involves pumping capacity and pumping-affected area. The sum-
mary statistics for FSP water levels and rainfall datasets are pre-
sented in Table 1.

3.2. Identification of the time span of rainfall affecting the rise of the
FSP water level

For constructing a rainfall-sewer flow model, the first step is to
identify the temporal impacts of rainfall on the rise of FSP water
level. In this study, the Pearson’s correlation coefficient is applied
to learning the linear relationship and the recognition of the high-
est correlations between FSP water level and rainfall at different
time lags for each station (R1–R6) as well as the weighted average
rainfall (Ravg) over the Yu–Cheng catchment. The results shown in
Fig. 4 indicate that it consistently takes about 40 min for rainfall at
stations R1–R6 to cause an increase in the FSP water level, similarly
for the Ravg. It is worthy to note that, in contrast to the river chan-
nel, a sewerage system can be implicitly considered as a small-
scale volume control system on account of the relatively small
catchment with which the system was associated. The variation
of the FSP water level is mainly affected by the rainfall aggregated
within a short period of time in the catchment. As a result, the time
span of rainfall affecting the rise of FSP water level at the Yu–Cheng
Pumping Station is set as 40 min. It is noted that ‘‘time span’’ is
used in this study while ‘‘concentration time’’ is usually used in
river channel studies.

3.3. Extraction of effective rainfall factors

The Pearson’s correlation coefficients between the FSP water
level and rainfall at gauging stations R1–R6 as well as Ravg are
not very high but quite similar (ranging from 0.41 to 0.63), which
could be due to the lumped effect of rainfall falling to the
Table 1
Summary statistics for FSP water levels (m) and the peaks of average rainfall (mm/10 min

Event
configuration

Model
stage

Number of
data

Peak of average rai
intensity (mm/10 m

1 Training 826 15.3
2 8.43
3 8.03
4 3.37
5 2.26
6 5.17

7 Validation 651 11.0
8 10.1
9 5.91

10 Testing 508 5.47
11 6.99
12 4.92
13 12.4
catchment and the complex interactions between rainfall and
sewer flow. In order to identify effective rainfall stations that sig-
nificantly affect the fluctuations of FSP water level for modeling
purpose, the GT is implemented in this study. That is to say,
rainfall-related inputs to the estimation models of FSP water level
is determined by the GT.
3.4. Model construction

In this study, one- to six-step-ahead FSP water level forecast
models during heavy rainfall and typhoon events for the Yu–Cheng
Pumping Station are constructed through the BPNN, the Elman NN
and the NARX network based on the inputs determined by the GT.
The practical meaning and contribution of three forecast models
will be surveyed under two scenarios: (1) the information of cur-
rent FSP water level is available (denoted as scenario I hereinafter);
(2) the information of current FSP water level is not available
(denoted as scenario II hereinafter). During model construction
and selection, the structures of the three types of NNs (BPNN,
Elman NN and NARX network) are evaluated and identified mainly
based on the summary statistics of their performances in three
independent datasets (i.e., training, validation and testing data-
sets). For each type of NNs, various model structures associated
with different node numbers are constructed and evaluated to
obtain their training performances. When the training process is
completed, several candidate NNs that have different structures
are obtained. Then the trained NN that produces the best perfor-
mance in the validation stage is selected as the final model to be
).

nfall
in)

Max FSP water
level (m)

Mean FSP water
level (m)

Standard
deviation (m)

5.68 3.12 1.04
3.08 2.50 0.24
2.73 2.25 0.28
2.40 2.07 0.14
2.41 2.13 0.09
2.57 1.79 0.37

3.69 2.23 0.48
2.68 2.05 0.39
2.85 2.07 0.31

2.84 2.17 0.18
2.69 2.25 0.19
2.50 2.08 0.26
4.59 2.57 0.55
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further tested by the testing dataset for evaluating its reliability.
This model selection strategy is applied to the BPNN, the Elman
NN and the NARX network, respectively.

The applicability and reliability of these three constructed fore-
cast models at different forecasting steps are evaluated by the root
mean square error (RMSE), correlation coefficient (CC) and coeffi-
cient of efficiency (Nash Efficiency or CE) (Nash and Sutcliffe,
1970), as shown below.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðĤi � HiÞ

2

n

s
ð3Þ

CC ¼
Pn

i¼1ðĤi � ĤÞðHi � HÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðĤi � ĤÞ

2Pn
i¼1ðHi � HÞ2

q ð4Þ

CE ¼ 1�
Pn

i¼1ðĤi � HiÞ
2

Pn
i¼1ðHi � HÞ2

ð5Þ

where Ĥi and Hi are the forecasted and observed FSP water levels of
the ith data, respectively. Ĥ and H are the average forecasted and
observed FSP water levels, respectively. And n is the number of data
points.

4. Results and discussion

This section presents the selection result of effective rainfall fac-
tors and the forecast performance of the static (BPNN) and
dynamic (Elman NN and NARX) neural networks in two scenarios
(w/ and w/o current FSP water level information). The results
and discussion are addressed in details, which are shown as
follows.

4.1. Identification of effective rainfall stations

For extracting effective rainfall factors, data of the antecedent
40-min rainfall collected at six gauging stations together with the
average rainfall (R1(t � 4)–R6(t � 4), Ravg(t � 4)) are first scaled to
[�1,1]. Then a total of 127 (27 � 1) C values corresponding to all
possible rainfall-related input combinations are calculated through
the GT. The produced C values are next sorted in an ascending
order, in which C values smaller than the 10th percentile
(C10 = 0.10) are classified as the best group (FC6C10 ), whereas those
bigger than the 90th percentile (C90 = 0.17) are classified as the
worst group (FCPC90 ). Fig. 5 shows the result of the GT, where blue
bars represent the occurrence frequency of factors in the best group
(FC6C10 ) while orange bars represent the occurrence frequency of
factors in the worst group (FCPC90 ), and factor scores calculated by
Eq. (6) for each rainfall factors are drawn into a green dotted line.

factor score ¼ 1� FCPC90

FC6C10

ð6Þ
R2 R5 R3 R6 R4 R1 R
avg

F
re

qu
en

cy
 

F
actor score 

1.00 

0.67 
0.57 

0.44 
0.25 

0.00 

-0.80 

-1.00 

-0.75 

-0.50 

-0.25 

0.00 

0.25 

0.50 

0.75 

1.00 

0

2

4

6

8

10

12
factor score 

Fig. 5. Determination of effective rainfall stations by the GT results.
where the factor score ranges from �1 to 1.
Therefore, effective rainfall factors can be identified as those

factors that are associated with higher factor scores, and the
threshold of the factor score is set as 0.5 in this study. Conse-
quently, stations R2, R3 and R5 are identified as the effective rain-
fall factors to be used in the forecast models.

4.2. Performance of FSP water level forecasts in scenario I: Current FSP
water level is available

In scenario I, data of the current FSP water level and rainfall of
R2, R3 and R5 are utilized to construct 10–60-min-ahead (N = 1–6)
FSP water level forecast models through three ANNs. The input–
output patterns of three ANN models can be represented as
follows:

WL̂FSPðt þ NÞ ¼ f ½WLFSPðtÞ; R2ðt þ N � 4Þ; R3ðt þ N � 4Þ; R5ðt þ N � 4Þ�
N 2 1—4ð10 minÞ

ð7Þ

WL̂FSPðt þ NÞ ¼ f ½WLFSPðtÞ; R2ðtÞ; R3ðtÞ; R5ðtÞ�
N 2 5—6ð10 minÞ ð8Þ

where WL̂FSPðt þ NÞ is the forecast at a lead time of N (10-min unit).
After implementing trial-and-error procedures for model

configuration based on the training and validation data sets, the
output-memory order q for NARX networks is 1 and all the three
models are configured to have only one hidden layer with 2–4
nodes for different forecasting steps. Summarized results are
presented in Table 2. Results indicate that the three comparative
models perform rather consistently in the training and validation
stages while both dynamic neural networks (the Elman NN and
NARX network) perform better than the static one (the BPNN) in
the testing stages. Besides, the NARX network outperforms the
Elman NN as the forecasting step exceeds four, and it even pro-
duces a high CE value (close to 0.7) as the forecasting step reaches
six (60-min-ahead forecast).

The 612 heavy rainfall event (12.4 mm/10-min; 54.1 mm/h)
with the highest peak FSP water level above 4.5 m is selected to
illustrate the hydrographs of observed versus 20, 50 and 60-min-
ahead forecasted FSP water levels in the testing stages of three
models (Fig. 6). And during the peak flow period (about 10 h) of
this event, 6 up to 11 pumping units were operated. Results show
that the Elman NN produces the best performance for 20-min-
ahead forecasting because its over-estimation between 10 and 20
time steps is comparatively less serious. However, the NARX net-
work can significantly mitigate the time-lag problem at the peak
value and well forecast the 50 and 60-min-ahead FSP water levels,
whereas the other two comparative models not only have signifi-
cant time-lag phenomena but fail to well forecast 50 and 60-
min-ahead water levels, in which fluctuations occur near peak
values.

Fig 7(a) shows the CE of 10–60-min-ahead forecasts in the test-
ing stages of three models in scenario I. The three network models
perform equally well for one- to three-step-ahead forecasting,
whereas significant differences among their performances are
found as the forecasting time step exceeds four (40 min). The rea-
son is that the time span of rainfall affecting the rise of the FSP
water level is 40 min such that the rainfall-water level processes
at 1–4 time steps could be suitably presented by rainfall input data
and FSP water level output data (Eq. (7)). In addition to the fact
that the persistence of FSP water level decreases as the time step
increases, the time lag of rainfall becomes significant as the fore-
casting time step exceeds four. As a result, both conditions would
cause a reduction in forecasting accuracy. It clearly indicates that
the NARX networks produce much higher CE values than the other



Table 2
Model performance of one- to six-step-ahead forecast for FSP water levels in scenario I.

Time step Number of nodes Model stage BPNN Elman NN NARX

RMSE (m) CC CE RMSE (m) CC CE RMSE (m) CC CE

t + 1 2 Training 0.07 0.99 0.99 0.07 0.99 0.99 0.07 0.99 0.99
Validation 0.07 0.98 0.96 0.07 0.98 0.97 0.07 0.98 0.96
Testing 0.10 0.96 0.92 0.09 0.96 0.93 0.09 0.97 0.93

t + 2 2 Training 0.12 0.98 0.96 0.11 0.98 0.97 0.11 0.98 0.96
Validation 0.12 0.94 0.89 0.10 0.96 0.91 0.12 0.94 0.89
Testing 0.17 0.90 0.77 0.15 0.91 0.82 0.16 0.91 0.79

t + 3 2 Training 0.14 0.97 0.95 0.14 0.97 0.95 0.14 0.97 0.95
Validation 0.14 0.91 0.83 0.14 0.92 0.84 0.15 0.90 0.81
Testing 0.18 0.89 0.71 0.18 0.88 0.72 0.18 0.88 0.72

t + 4 2 Training 0.15 0.97 0.94 0.15 0.97 0.94 0.18 0.96 0.91
Validation 0.16 0.88 0.78 0.17 0.88 0.77 0.20 0.82 0.65
Testing 0.21 0.87 0.62 0.19 0.88 0.67 0.18 0.86 0.70

t + 5 3 Training 0.20 0.95 0.89 0.19 0.95 0.90 0.17 0.96 0.92
Validation 0.19 0.85 0.70 0.17 0.87 0.75 0.19 0.85 0.70
Testing 0.22 0.82 0.57 0.20 0.83 0.65 0.19 0.87 0.69

t + 6 4 Training 0.24 0.92 0.84 0.22 0.94 0.87 0.16 0.96 0.93
Validation 0.19 0.85 0.70 0.19 0.84 0.69 0.22 0.78 0.58
Testing 0.23 0.77 0.52 0.22 0.79 0.58 0.19 0.88 0.67
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Fig. 6. (a) 20, (b) 50 and (c) 60-min-ahead forecasts of the 612 heavy rainfall event for scenario I with respect to the BPNN, Elman NN and NARX network.
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two models for four to six-step-ahead forecasting, whereas the
Elman NNs perform slightly better than the BPNNs.

Finally, the relationship between forecast errors (RMSE) and
forecasting steps of these three models is presented in Fig. 7(b).
The RMSE trend of the NARX network model increases gradually
as the forecasting step increases, and it becomes flat after three
forecasting steps. Nevertheless the RMSE trends of the BPNN and
the Elman NN models significantly increase as the forecasting step
increases, and they have steeper slopes than that of the NARX after
three forecasting steps. The results provide evidence that with the
feedbacks of imperfect outputs representing the information clos-
est to the forecasting horizon to the input layer, the NARX network
can effectively adopt extra information to promote the accuracy
and reliability of multi-step-ahead FSP water level forecasts.

4.3. Performance of FSP water level forecasts in Scenario II: Current
FSP water level is unavailable

In the flood control centre of the Taipei City Government, the
datasets of the current FSP water level at sixty-five pumping
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stations during typhoon events are transmitted only through two
channels of radio waves, and thus the backend system of the flood
control centre may not successfully receive the current FSP water
level information every ten minutes. Furthermore, the preliminary
correlation analysis results indicate the time span between the FSP
water level and rainfall over the study catchment is about 40 min.
An alternative to the forecast model of scenario I is considered
essential for auxiliary purposes. In this scenario (II), FSP water level
forecast models are constructed based only on the rainfall of R2, R3
and R5 to prevent any possible delay in the receipt of the current
FSP water level due to the unstable frequency of data transmission.
The input–output patterns of three ANN models can be repre-
sented as follows:

WL̂FSPðt þ NÞ ¼ f ½R2ðt þ N � 4Þ; R3ðt þ N � 4Þ; R5ðt þ N � 4Þ�
N 2 1—4ð10 minÞ

ð9Þ

WL̂FSPðt þ NÞ ¼ f ½R2ðtÞ; R3ðtÞ; R5ðtÞ�
N 2 5—6ð10minÞ ð10Þ

where WL̂FSPðt þ NÞ is the forecast at a lead time of N (10-min unit).
After implementing trial-and-error procedures for model con-

figuration based on the training and validation data sets, the out-
put-memory order q for NARX networks is 1 and all the three
models are configured to have only one hidden layer with 2–4
nodes for different forecasting steps. Summarized results are pre-
sented in Table 3. Results indicate that the NARX networks
significantly outperform the other two network models in terms
of lower RMSE and higher CC and CE values in all three stages
(training, validation and testing) for one- to six-step-ahead fore-
casts. It is noted that the performance of three ANN models in
scenario II is not as good as that of scenario I. The reason is that
only rainfall information is utilized as model inputs in scenario
II, while another important factor, i.e., the persistent effect
(auto-regression) of the FSP water level, is not considered (or
unavailable) in this circumstance. Under such condition, the NARX
network equipped with recurrent connections from imperfect
outputs can produce much more satisfactory results than those
of the Elman NN and the BPNN.

Similar to that of scenario I, an analysis is conducted on the 612
heavy rainfall event for scenario II. The rainfall input datasets from
three gauging stations and 50-min-ahead forecasts are illustrated
in Fig. 8. It demonstrates that the NARX network can well forecast
the 50-min-ahead FSP water level and maintain the water level
trail with less fluctuation than the BPNN and the Elman NN. The
strong fluctuations occurring in the hydrographs associated with
the BPNN and the Elman NN are mainly because these two models
are driven only by the rainfall-related inputs that originally bear
high variations, whereas the NARX network facilitates extra input
information from the previous forecasted FSP water level to
smooth the fluctuations of the forecasted hydrograph.

Fig 9(a) shows the CE of 10–60-min-ahead forecasts in the test-
ing stages of three network models in scenario II. It clearly indi-
cates that the NARX networks produce much higher CE values
than the other two network models, while the Elman NNs perform
even worse than the BPNNs, which implies the recurrent connec-
tions from the hidden layer of each Elman NNs magnify the highly
variable rainfall information and thus do not increase the reliabil-
ity of the Elman NNs.

Fig 9(b) illustrates the relationship between forecast errors
(RMSE) and forecasting steps of these three models. The results
show that the NARX network produces much lower RMSE values
than the other two models for one- to six-step-ahead forecasting,
and the RMSE values of three models are relatively consistent (flat)
for one- to four-step-ahead forecasting. For the NARX network, the
RMSE value is the lowest at the 4th forecasting step and start fast
rising afterward. This is mainly because only current rainfall infor-
mation is available as the forecasting step increases to five and six
steps, which significantly causes the degradation of model perfor-
mance at the 5th and 6th forecasting steps. This phenomenon is
consistent with the 40-min time span of rainfall affecting the rise
of the FSP water level, which is determined by the correlation anal-
ysis addressed in Section 3.2.

In brief, the NARX network implemented without the input of
the current FSP water level information can still provide reason-
able and reliable multi-step-ahead FSP water level forecasts, and
therefore this model can be adopted for auxiliary purposes.

4.4. Summary of forecast performance

We explore the explanatory power in multi-step-ahead fore-
casting for FSP water levels through one static neural network
(BPNN) and two dynamic neural networks (NARX network and
Elmann NN). Results of scenario I demonstrate that the static net-
work is inferior to the dynamic ones because the inputs of the sta-
tic network depend solely on observed data, whereas those of the
dynamic networks incorporate observed data with time delay units
through recurrent connections either from the output layer (NARX
network) or from the hidden layer (Elman NN), which makes
significant contribution to the forecast values.

We further explore the ability of these two recurrent neural
networks (NARX network and Elman NN) to solve the problem
of long-term dependencies in a time series. We find that although
the NARX network may not completely circumvent this problem,
it can much effectively discover the long-term dependencies



Table 3
Model performance of one- to six-step-ahead forecast for FSP water levels in scenario II.

Time step Number of nodes Model stage BPNN Elman NN NARX

RMSE (m) CC CE RMSE (m) CC CE RMSE (m) CC CE

t + 1 3 Training 0.44 0.71 0.49 0.39 0.78 0.59 0.27 0.90 0.81
Validation 0.35 0.46 0.01 0.33 0.42 0.13 0.31 0.56 0.25
Testing 0.26 0.68 0.44 0.29 0.62 0.30 0.21 0.81 0.63

t + 2 2 Training 0.48 0.74 0.39 0.39 0.78 0.59 0.27 0.90 0.81
Validation 0.34 0.39 0.07 0.32 0.44 0.15 0.29 0.61 0.29
Testing 0.26 0.66 0.43 0.27 0.66 0.37 0.20 0.84 0.67

t + 3 2 Training 0.42 0.75 0.53 0.38 0.79 0.60 0.24 0.92 0.84
Validation 0.33 0.44 0.06 0.32 0.43 0.13 0.31 0.62 0.21
Testing 0.26 0.66 0.41 0.28 0.65 0.34 0.21 0.80 0.64

t + 4 2 Training 0.47 0.74 0.40 0.39 0.78 0.60 0.25 0.91 0.83
Validation 0.32 0.42 0.14 0.32 0.42 0.12 0.29 0.62 0.31
Testing 0.27 0.64 0.38 0.27 0.66 0.35 0.19 0.83 0.67

t + 5 3 Training 0.48 0.62 0.38 0.39 0.79 0.59 0.26 0.91 0.82
Validation 0.37 0.38 �0.17 0.32 0.45 0.16 0.29 0.61 0.29
Testing 0.28 0.58 0.30 0.30 0.60 0.21 0.21 0.82 0.59

t + 6 4 Training 0.48 0.64 0.38 0.43 0.71 0.50 0.26 0.91 0.82
Validation 0.36 0.41 �0.07 0.33 0.46 0.09 0.31 0.52 0.18
Testing 0.28 0.56 0.27 0.29 0.51 0.25 0.24 0.71 0.47
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Fig. 8. Rainfall input datasets from three gauging stations and 50-min-ahead forecasts of the 612 heavy rainfall event for scenario II with respect to the BPNN, Elman NN and
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through its recursive outputs and mitigate the fluctuation prob-
lem (instability) in its output. As comparing the results obtained
from scenario II, it is easy to tell that the recurrent effect from
the output layer of the NARX network is more effective in mod-
eling the long-term dependencies than the connection results
from the hidden layer of the Elman NN. This result provides extra
evidence that the backward connections from the hidden layer
(Elman NN) could only maintain the previous values of the hid-
den units with an emphasis on the highly variable rainfall infor-
mation. Consequently the backward connections from the hidden
layer (Elman NN) impose less effects on the output than the
backward connections from the output layer (NARX network),
and the generalizability of the Elman NN is weaker than that of
the NARX network and the BPNN.

We notice that for the NARX and the Elman NN the validation
results are worse than the testing ones in all the cases of scenario
II and in the t + 4, t + 5 and t + 6 cases of scenario I. This is mainly
because the variability of rainfall intensity (which also results in
the higher variability of FSP water level) in the validation set is
higher than that in the testing set (Table 1), and rainfall effect
would decrease as the forecasting step exceeds the time span
of rainfall affecting the rise of the FSP water level over the catch-
ment (in our case: 40 min).

From Tables 2 and 3, we notice that all the three forecast
models perform better in scenario I (w/ current FSP water level)
than in scenario II (w/o current FSP water level). This reveals that
the FSP water level is the dominant factor for the forecasting pro-
cess. In terms of CE values produced by the NARX network in sce-
nario II (Table 3), we notice the training cases perform equally
well (0.81–0.84) for one- to six-step-ahead forecasting whereas
the testing cases perform relatively poor (0.47–0.67). This is
mainly because the observed input–output data (i.e., rainfall
and water level) in the training stages are used to train and opti-
mize the corresponding weights of the networks, whereas similar
strategies are not implemented in the validation and testing
stages.
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5. Conclusions

In this study, three ANN models (one static, two dynamic) are
developed to make forecasts on the evolution of water level at
floodwater storage pond (FSP) as a function of current FSP water
level and rainfall information based on the inputs extracted by
an advanced factor selection method (GT) for allowing sufficient
time advance to warm up the pumping system and enhancing
secure pumping operations to prevent the city from flooding. The
temporal resolution of water level and rainfall data is 10 min,
and the forecasting horizon is 60 min (i.e., 6 time steps ahead).

The results demonstrate that the GT can efficiently identify the
effective rainfall factors as important inputs to the ANNs for obtain
promising forecast results; and the NARX network has higher
applicability than the BPNN and the Elman NN, in term of lower
RMSE and higher CC and CE values for 10–60-min-ahead forecasts
in both scenarios. The NARX network can well forecast the hydro-
graph of FSP water level and maintain the water level trail with
less fluctuation, which is attributed mainly to the recurrent con-
nections from the imperfect outputs. In addition the models con-
structed for scenario I (w/ current FSP water level) is superior to
those of scenario II (w/o current FSP water level), which demon-
strates the use of floodwater storage pond level as an input is dem-
onstrated to improve model accuracy. Nevertheless the NARX
network model for scenario II can still produce satisfactory fore-
casts, which suggests that the NARX network model for scenario
II can be effectively implemented as an auxiliary model if current
FSP water level information is not available.
In technical aspects, the outputs of the static network (BPNN)
depends solely on observed data, whereas the outputs of the
dynamic networks incorporate observed data with time delay units
through recurrent connections and thus significant contribution
could be made to the output values. The dynamic networks have
the merits to effectively discover the long-term dependencies
through their recursive outputs and mitigate the fluctuation prob-
lem (instability) in their outputs. Besides, the backward connec-
tions from the hidden layer (Elman NN) could only maintain the
previous values of the hidden units that highly depend on the reli-
ability of input information, and thus less effect is imposed on the
output values, as compared with that of the backward connections
from the output layer (NARX network).

In sum, the proposed approaches can well construct multi-step-
ahead hydrological water level forecast models for urban flood
control pumping. The results of this study are beneficial to the
identification of inundation risks induced by inner stormwater
and can be incorporated into suitable operational strategies for
enhancing the pumping efficiency at inundation-prone areas.
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