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Quantifying predictive uncertainty inherent in the nonlinear multivariate dependence structure of multi-
step-ahead PM2.5 forecasts is challenging. This study integrates a Multivariate Bayesian Uncertainty
Processor (MBUP) and an artificial neural network (ANN) to make accurate probabilistic PM2.5 forecasts.
The contributions of the proposed approach are two-fold. First, the MBUP can capture the nonlinear mul-
tivariate dependence structure between observed and forecasted data. Second, the MBUP can alleviate
predictive uncertainty encountered in PM2.5 forecast models that are configured by ANNs. The reliability
of the proposed approach was assessed by a case study on air quality in Taipei City of Taiwan. We con-
sider forecasts of PM2.5 concentrations as a function of meteorological and air quality factors based on
long-term (2010–2018) hourly observational datasets. Firstly, the Back Propagation Neural Network
(BPNN) and the Adaptive Neural Fuzzy Inference System (ANFIS) were investigated to produce determin-
istic forecasts. Results revealed that the ANFIS model could learn different air pollutant emission mech-
anisms (i.e. primary, secondary and natural processes) from the clustering-based fuzzy inference system
and produce more accurate deterministic forecasts than the BPNN. The ANFIS model then provided inputs
(i.e. point estimates) to probabilistic forecast models. Next, two post-processing techniques (MBUP and
the Univariate Bayesian Uncertainty Processor (UBUP)) were separately employed to produce probabilis-
tic forecasts. The Bayesian Uncertainty Processors (BUPs) can model the dependence structure (i.e. pos-
terior density function) between observed and forecasted data using a prior density function and a
likelihood density function. Here in BUPs, the Monte Carlo simulation was introduced to create a proba-
bilistic predictive interval of PM2.5 concentrations. The results demonstrated that the MBUP not only out-
performed the UBUP but also suitably characterized the complex nonlinear multivariate dependence
structure between observations and forecasts. Consequently, the proposed approach could reduce
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predictive uncertainty while significantly improving model reliability and PM2.5 forecast accuracy for
future horizons.

� 2019 Elsevier B.V. All rights reserved.
1. Introduction

In the recent era, the impacts of air pollution on human health
has become a major global concern (Huang et al., 2014; Van Fan
et al., 2018). Natural sources (e.g. sea salt from oceans, volcanic
eruptions, and windblown dust) and anthropogenic sources (e.g.
motor vehicle exhaust, heat and power generation, industrial pro-
cesses, and open burning activities) transformation of precursor
emissions in the atmosphere such as SO2 to Sulphates and NOX

to Nitrates may also cause PM2.5 (Zhang et al., 2018). In recent
years, particulate matter air pollution has also raised a serious con-
cern in Taiwan (Li et al., 2017). Plenty of studies were devoted to
establishing various models to predict PM2.5 concentrations (e.g.
Al-Saadi, et al., 2005; Biancofiore, et al., 2017; Feng, et al., 2015;
Niu et al., 2016). The quantification and interpretation of model
uncertainty becomes a crosscutting issue that is common to air
quality communities and many other disciplines. There is a notice-
ably growing trend to move away from purely deterministic fore-
casts towards probabilistic forecasts where modelers seek to
describe the likelihood of events and their associated probabilities
(Dabberdt and Miller, 2000; Krapu and Borsuk, 2019). Real-time
PM2.5 forecasting increasingly moves towards probabilistic fore-
casting in place of traditional deterministic forecasting to meet
the demands of the rising public awareness of human health
(Berardis and Eleonora, 2017).

Accuracy and reliability of air quality forecasts is affected by
several sources, including meteorological and initial input uncer-
tainties (i.e. erroneous sensor readings), as well as the inherent
uncertainty (i.e. model structure and parameters) of the forecast
model. One of the primary techniques explored to reflect different
uncertainties in air quality forecasts is probabilistic forecasting
(Coccia and Todini, 2011; Dabberdt and Miller, 2000). Probabilistic
forecasts can be produced by three commonly used approaches.
The first approach integrates a deterministic forecast model with
a probabilistic pre-processing technique such as Fuzzy Clustering
(FC), Wavelet Transform (WT) and the bias-correction method
(e.g. Dunea et al., 2015; Gong and Ordieres, 2016; Lyu et al.,
2017). The second approach is a stochastic (or probabilistic) fore-
cast model, for instance, Quantile Regression Neural Network
(QRNN), Random Forest (RF) and Gradient Boosting Decision Tree
(GBDT) (e.g. Cannon, 2011; Yu et al., 2016; Liu et al., 2019). The
third approach integrates a deterministic forecast model with a
probabilistic post-processing technique such as Multiple Linear
Regression (MLR), Kalman Filtering, Generalized Likelihood Uncer-
tainty Estimation (GLUE), Bayesian Uncertainty Processor (BUP)
and Bayesian Model Averaging (BMA) (e.g. Aznarte, 2017;
Djalalova et al., 2015; Pucer et al., 2018; Zhai and Chen, 2018).
The first approach focuses on quantifying the impacts of input
uncertainty on air quality forecasts because pre-processing tech-
niques are widely used either to simulate the stochasticity or to
correct the bias/error of input variables. The second approach
intends to quantify the impacts of model structure uncertainty
on air quality forecasts because a stochastic forecast model is
inherently random, with uncertain factors built into the model.
The third approach aims at quantifying the impacts of the overall
predictive uncertainty associated with model structure and param-
eters on air quality forecasts because techniques involved can
transform deterministic forecasts into a conditional probability
distribution based on the statistical theorem. In this study, we
pay special attention to exploring an approach that combines a
deterministic forecast model and a probabilistic post-processing
technique for improving PM2.5 forecasts, considering ‘‘perfect” data
as model inputs. When referring to ‘‘perfect” input data in this
study, it implies that there is no uncertainty in sensor readings.

Probabilistic forecasts coupled with post-processing techniques
are commonly used to supplement the information provided by
point-value predictions (Herr and Krzysztofowicz, 2015). The
Bayesian Forecasting System (BFS) proposed by Krzysztofowicz
(1999) offers an ideal-theoretic post-processing framework of
uncertainty quantification for probabilistic air quality forecasting,
where the theoretical structure can be integrated with the results
obtained from empirically validated models and numerical compu-
tation methods (Herr and Krzysztofowicz, 2015; Zhang, 2017). The
Bayesian Uncertainty Processor (BUP) is a vital component of the
BFS, and it can be adopted to quantify forecast uncertainty and pro-
duce probabilistic forecasts under the hypothesis that there is no
input uncertainty, considering ‘‘perfect” meteorological data (e.g.
rainfalls) as model inputs (Krapu and Borsuk, 2019; Pucer et al.,
2018; Ryan, 2016). Probabilistic forecasting exists at the intersec-
tion of Bayesian statistics, machine learning and post-processing
techniques, and therefore it is contributive to the air quality mod-
eling community. Based on the BUP approach proposed by
Krzysztofowicz (1999), various probabilistic forecast methods
were developed and widely applied to making forecasts on meteo-
rological and air quality time series (e.g. Garner and Thompson,
2013; Gong and Ordieres, 2016; Zhai and Chen, 2018). The BUP
family contains the univariate BUP (UBUP, Krzysztofowicz, 2002)
and the multivariate BUP (MBUP, Krzysztofowicz and Maranzano,
2004). The UBUP approach can only quantify the nonlinear bivari-
ate (=2) dependence between observed and forecasted data at each
horizon, whereas the MBUP approach can characterize the nonlin-
ear multivariate (�3) dependence between observed and fore-
casted data for two horizons at a time (Krapu and Borsuk, 2019;
Zhang, 2017). That is to say, the MBUP approach generalizes the
UBUP approach and quantifies the stochastic dependence of the
consecutive observed and forecasted data between two horizons,
in addition to the predictive uncertainty at each horizon. A review
of literature indicates that the MBUP approach has not yet been
applied to probabilistic air quality forecasting. Both Bayesian and
frequentist approaches are feasible and valid, and their predictive
performances need to be assessed. Probabilistic forecasting not
only poses challenges but also creates outreach opportunities. Con-
sequently, it is imperative to conduct in-depth research on the
exploration of the MBUP for quantifying and reducing the uncer-
tainty encountered in multi-step-ahead PM2.5 forecasting by char-
acterizing the nonlinear multivariate dependence structure
between observed and forecasted data.

To the best of our knowledge, the process of transformation
from a deterministic forecast into a probabilistic forecast involves
the quantification of the uncertainty inherent in the deterministic
forecast. There are two main types of models, physically-based
(chemical transport) and data-driven (or artificial intelligence)
ones, used to predict PM2.5 concentrations (Zhang, 2017). The main
merit of physically-based models is their talent to smartly imitate
the PM2.5 emission mechanisms, whereas the demerits of
these models are that they fail to dynamically or adaptively learn
the stochastic and/or fuzzy PM2.5 emission process induced by
the changing environment when encountering scale-related
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(transferability) problems (Coelho et al., 2014; Wu et al., 2018a).
The main advantage of data-driven models is their capability to
tackle highly stochastic and nonlinear prediction problems by
means of dynamically adjusting model structures, algorithms and
parameters. Besides data-driven models can achieve great perfor-
mance within dozens of seconds during model construction even
though such case study has a complex context of air quality char-
acteristics and plenty of meteorological datasets (Chen et al., 2018;
Voukantsis et al., 2011). Artificial Neural Networks (ANNs) are
data-driven methods. ANNs have evolved rapidly over the last
few decades and have been widely applied to predicting air quality
time series (e.g. Akbari Asanjan et al., 2018; Ausati and Amanollahi,
2016; Gao et al., 2018; Nieto et al., 2018; Prasad et al., 2016;
Taghavifar et al., 2016; Yeganeh et al., 2018; Zhu et al., 2018;
Zhou et al., 2019a,b). If accurate deterministic PM2.5 prediction
could be made in advance, negative impacts of data-driven models
on multi-step-ahead probabilistic forecasts could be minimized.
Due to the lack of prior knowledge of PM2.5 emission mechanisms,
data-driven models may suffer from instability and are prone to
systematically underpredicting air quality concentrations for
extreme events, i.e. the events that impose the most adverse
effects on human health. To cope with these challenges, probabilis-
tic forecasting provides a practical and reliable approach that
serves as a complement to data-driven models (Aznarte, 2017;
Djalalova et al., 2015; Lyu et al., 2017; Kaminska, 2018; Mok
et al., 2017; Monteiro et al., 2013). Fuzzy logic can easily provide
heuristic reasoning but has difficulty in generating exact solutions.
In comparison to the other data-driven models mentioned above,
the ANFIS model is adopted to make deterministic PM2.5 forecasts
in this study on the grounds that: (1) the ANFIS merges the neural
network and the fuzzy logic technique to supply adequate solu-
tions while delivering qualitative heuristic knowledge about the
solutions, and (2) its fuzzy if-then rules provide insights into the
non-linear, stochastic and fuzzy relationship between air quality
and meteorology (Ausati and Amanollahi, 2016; Chang and
Chang, 2006; Prasad et al., 2016). Therefore, in-depth research on
data-driven models is needed for improving model reliability and
forecast accuracy and on the conversion of the deterministic fore-
casts into probabilistic forecasts using post-processing techniques.

The novelties of this study are two-fold. Firstly, this study
focuses on probabilistic PM2.5 forecasting, whereas our previous
works (Zhou et al., 2019a,b) concentrate on deterministic PM2.5

forecasting. Secondly, this study explores a Multivariate Bayesian
Uncertainty Processor (i.e. MBUP) approach while other studies
(e.g. Huang et al., 2018; Liu et al., 2008) explore Univariate Baye-
sian Uncertainty Processor (i.e. UBUP) approaches for probabilistic
forecasting. The MBUP is introduced for the first time to quantify
the nonlinear multivariate (�3) dependence between observed
and forecasted PM2.5 data. We explore a MBUP to effectively quan-
tify and reduce the predictive uncertainty encountered in multi-
step-ahead PM2.5 forecasting. At first, BPNN and ANFIS models
are utilized to produce deterministic PM2.5 forecasts and their per-
formances are evaluated to identify the model that offers more
accurate and reliable deterministic forecasts for use in probabilistic
forecasting. For comparison purpose, both MBUP and UBUP
approaches are implemented separately to transform deterministic
PM2.5 forecasts into probabilistic PM2.5 forecasts. The reliability
and applicability of probabilistic forecasting approaches is assessed
by a case study of regional multi-ahead-step PM2.5 forecasts for
Taipei City of Taiwan. The remainder of this study is organized as
follows. Section 2 presents the framework of the proposed meth-
ods, including deterministic forecasts as well as the UBUP and
MBUP probabilistic forecasts. Section 3 introduces the study area
and materials. Section 4 presents the results and discussion on
the methods applied to deterministic and probabilistic PM2.5 fore-
casting. Conclusions are then drawn in Section 5.
2. Methods

The goal of this study is to create probabilistic forecasts and
reduce the predictive interval to a small range. We integrate BUP
and ANN to improve probabilistic PM2.5 forecasts, where ANN
models (ANFIS and BPNN) are adopted to produce deterministic
PM2.5 forecasts while the post-processing techniques (MBUP and
UBUP) are adopted to create probabilistic PM2.5 forecasts. Fig. 1
illustrates the probabilistic forecasting architecture, where the
ANFIS (Fig. 1(a)) is incorporated separately into the UBUP
(Fig. 1(b)) and the MBUP (Fig. 1(c)) probabilistic forecast
approaches. The BPNN serves as the benchmark of deterministic
forecasts while the UBUP serves as the benchmark for probabilistic
forecasts. The methods used in this study are briefly introduced as
follows.

2.1. Deterministic PM2.5 forecast models

The learning algorithm of the ANFIS (Jang, 1993) is a hybrid
algorithm composed of the steepest descent algorithm (SDA) and
the least squares estimation (LSE). Owing to its capability in
extracting highly nonlinear, stochastic and fuzzy features, the
ANFIS is suitable for predicting multi-step-ahead time series (e.g.
Barzegar, et al., 2018; Chang et al., 2014, 2016; Dehghani, et al.,
2019). The ANFIS is configured by five layers consisting of: (1)
Input layer, (2) Fuzzy-AND operation, (3) Normalization, (4) Conse-
quent layer, and (5) Output layer (Fig. 1(a)). A detailed description
of the ANFIS model can be found in Jang (1993).

To demonstrate the reliability and accuracy of the ANFIS model,
the BPNN model is implemented for comparison purpose. The
main difference between BPNN and ANFIS models is that the for-
mer has a simplex neural network architecture while the latter
hybrids neural network and fuzzy logic techniques. The distin-
guishing characteristic of the ANFIS is its ability to update param-
eters using a hybrid learning algorithm. In this study, the SDA is
employed to tune the nonlinear parameters ai;bi; cif g while the
LSE is introduced to identify the linear parameters pi;qi; rif g. In
addition, the Levenberg-Marquardt back propagation algorithm
(Yu and Wilamowski, 2011) is used to train the BPNN model. Then
the trained ANN producing the best performance in the validation
stage is selected as the final model for evaluating model reliability
with test datasets.

2.2. Probabilistic forecasting using the UBUP

The UBUP proposed by Krzysztofowicz (2002) can identify the
nonlinear bivariate dependence structure between observed and
forecasted data at each lead time (or forecast horizon) m (m starts
from 1 up to M) step by step. M is the number of time steps. The
core theories of the UBUP are briefly described as follows.

Let predictor H be the observed data whose realization h is fore-
casted. Let estimator S be the output data generated by the corre-
sponding deterministic forecast model constructed by ANNs whose
realization s constitutes a point estimate of H. Let random variable
H0 represent the observed data at the current time (m = 0). Hm and
Sm (m = 1, 2, . . ., M) are the observed data and the corresponding
deterministic forecasted data at lead time m, respectively. The
groundwork for the UBUP concentrates on identifying the empiri-
cal dependence structure of the joint process {(Hm, Sm), m = 1, . . .,
M} between observed and forecasted datasets. Uncertainty of
probabilistic forecasts at each lead time m can be quantified by a
univariate posterior density function, as shown below.

/m hmjh0; smð Þ ¼ f m smjh0;hmð ÞÂ � gm hmjh0ð ÞRþ1

�1
f m smjh0; hmð ÞÂ � gm hmjh0ð Þdhm

ð1Þ



Fig. 1. Architecture of probabilistic forecasting. (a) ANFIS neural network model. (b) Univariate Bayesian Uncertainty Processor (UBUP) approach. (c) Multivariate Bayesian
Uncertainty Processor (MBUP) approach. SDA denotes the steepest descent algorithm. LSE denotes the least squares estimation.
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where f m smjh0;hmð Þ is the density function of the forecasted data Sm
at lead time m. h0 and hm are the realizations of the observed data-
sets at the current time and lead time m, respectively. The condi-
tional hypotheses for f m smjh0;hmð Þ are that the observed data
Hm = hm at lead time m and the observed data H0 = h0 at current
time (m = 0). gm hmjh0ð Þ is the transition prior density of the data
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Hm at lead time m, where the conditional hypothesis is that the
observed data H0 = h0 at current time (m = 0). /m hmjh0; smð Þ is the
posterior density function used to quantify the uncertainty of Hm,
which remains after the deterministic forecast (i.e. ANNs) model
is constructed and produces the forecasted Sm = sm. sm is the realiza-
tion of the deterministic forecasted data at lead time m. Besides,
/m hmjh0; smð Þ is the posterior density function for the joint process
{(Hm, Sm), m = 1, 2, . . ., M} between observed and forecasted data-
sets based on the hypothesis that the observed data is H0 = h0 at
current time (m = 0). It is understood that when m = 1, the condi-
tional densities shown in Eq. (8) can be formulated as
/1 h1jh0; s1ð Þ, f 1 s1jh0; h1ð Þ and g1 h1jh0ð Þ

2.3. Probabilistic forecasting using the MBUP

From what has been discussed above, the UBUP can character-
ize the nonlinear bivariate dependence structure between
observed and forecasted data. But it fails to capture the nonlinear
multivariate (�3) dependence between observed and forecasted
data. In consequence, Krzysztofowicz and Maranzano (2004) pro-
posed the MBUP for extracting the nonlinear multivariate depen-
dence features among multi-step-ahead forecasts. The MBUP can
provide a family of posterior density functions of the actual data-
sets {Hm, m = 1, 2, . . ., M}, conditional on a realization of the model
data {Sm, m = 1, 2, . . ., M} output from a deterministic forecast
model, and an observation of the current data H0. The groundwork
for the MBUP concentrates on identifying the empirical depen-
dence structure of the joint process {(Hm, Hm�1, Sm), m = 1, . . ., M}
between observed and forecasted data. The uncertainty of proba-
bilistic forecasts from the 1st step to the Mth step can be quantified
by multivariate posterior density functions, as shown below.

/M hMjh0; sMð Þ ¼
YM
m¼1

/m hmjh0;hm�1; smð Þ ð2aÞ

/m hmjh0;hm�1; smð Þ ¼ f m smjh0; hm�1;hmð Þ � gm hmjh0; hm�1ð ÞRþ1

�1
f m smjh0; hm�1;hmð Þ � gm hmjh0;hm�1ð Þdhm

ð2bÞ

where f m smjh0;hm�1;hmð Þ is the density function of the forecasted
data Sm, conditional on the hypotheses that the observed data
Hm = hm and Hm-1 = hm-1, and the observed datum H0 = h0 at the cur-
rent time m = 0. gm hmjhm�1;h0ð Þ is the transition prior density from
the datum Hm-1 = hm-1 to the datum Hm, conditional on the hypoth-
esis that the observed datum is H0 = h0 at the current time m = 0.
/m hmjh0;hm�1; smð Þ is the multivariate posterior density function
used to quantify the uncertainty about Hm and Hm-1, which remains
after the deterministic forecast model (e.g. ANFIS) produces the
forecasted Sm = sm. /M hMjh0; sMð Þ is a family of multivariate poste-
rior density functions for the joint process {(Hm, Sm), m = 1, . . ., M}
between observed and forecasted data based on the hypothesis that
the observed datum H0 = h0 at the current time m = 0.

It is noted that the differences between the UBUP and the MBUP
involve two main aspects. Firstly, from the standpoint of model
structure the former is a univariate posterior density function
whereas the latter is a family of multivariate posterior density
functions. Secondly, from the standpoint of model function the for-
mer is employed to extract the nonlinear bivariate dependence
among data pair {(Hm, Sm), m = 1, 2, . . ., M} whereas the latter is
employed to extract the nonlinear multivariate (�3) dependence
among data pair {(Hm, Hm-1, Sm), m = 1, 2, . . ., M}. The parameters
of the BUPs consist of the parameters of the marginal prior distri-
butions, the parameters of the marginal initial distributions, and
the dependence parameters of the posterior distributions.
According to the structures shown in Eqs. (1) and (2), the pos-
terior density function in the BUPs (UBUP & MBUP) is closely asso-
ciated with the prior density function and the likelihood function.
The Normal Quantile Transform (NQT) strategy (Krzysztofowicz,
2002) is one of the most common techniques used to compute
the posterior density function and the likelihood function. The
implementation procedures for the UBUP and the MBUP (Fig. 1
(b) and (c)) contain the following four steps (Krzysztofowicz and
Maranzano, 2004).

Step 1 Perform data transformation from the real space to the
Gaussian space for both actual and forecasted datasets {(Hm,
Sm), m = 1, . . ., M}.
Step 2 Compute the univariate (multivariate) prior density
function and the likelihood function of the UBUP (MBUP).
Step 3 Compute the univariate (multivariate) posterior density
function of the UBUP (MBUP).
Step 4 Implement data transformation from the Gaussian space
to the real space and carry out the Monte Carlo simulation for
probabilistic forecasting.

3. Study area and materials

The study area is illustrated in Fig. 2. Taiwan has undergone
fast-growing economy and population for decades. Air quality
deterioration has become a hot topic in Taiwan in recent years. Tai-
pei City is the center of politics, commerce and culture in Taiwan.
This city covers an area of 272 km2 and has a population of 2.68
million in 2018. People across Taipei City nowadays are forced to
cope with a high-level invasion of PM2.5. Air pollution is not just
about sore throats and respiratory diseases but a matter of life or
death. Therefore, healthy and green urban development demands
for accurate multi-step-ahead PM2.5 forecasts that adequately deal
with the high variability of regional air quality.

Fig. 2 illustrates the locations of Taipei City and five air quality
monitoring stations (also responsible for monitoring meteorologi-
cal factors) in the study area. Stations A1 (Yonghe) and A2 (San-
chong) are traffic stations, located in urban areas with heavy
traffic. Stations A3 (Songshan) and A4 (Shilin) are general stations,
located in urban areas with little traffic. Station A5 (Yangming) is a
park station, located in the Yangmingshang Park whose elevation
ranging between 200 m and 1120 m. Traffic stations are obligated
to monitor the emissions from primary air pollutants. General sta-
tions are obligated to monitor the emissions from secondary air
pollutants. A park station represents the natural situation that
has less human intervention, and air quality is monitored here
for conservation purpose. More description about the functions
of the five stations can be found in the official statement released
by the Environmental Protection Administration in Taiwan (TW
EPA, https://taqm.epa.gov.tw/taqm/en/b0101.aspx).

Hourly data of eight air quality factors (PM2.5, PM10, O3, NOx,
NO2, NO, SO2, CO) and five meteorological factors (rainfall, temper-
ature, wind speed, wind direction, and relative humidity) over a
span of 9 years (2010–2018) are available in the study area. Data
shuffling operation would make sure that the datasets allocated
into training, validation and testing stages are representative of
the overall distribution of the data. Moreover, data shuffling can
serve the purposes of reducing variance, ensuring model generaliz-
ability, and avoiding overfitting. A total of 78,888 (=[(2 � 366)
+ (7 � 365)] � 24) hourly datasets are used and randomly allocated
into three independent datasets, where 35,064 datasets (4 years)
are used for model training while the remaining 26,304 datasets
(3 years) and 17,520 datasets (2 years) are used for model validat-
ing and testing, respectively. To reduce the negative effect of the
different scales of input data on model learning, all thirteen input
variables are transformed into the same scale. For obtaining a

https://taqm.epa.gov.tw/taqm/en/b0101.aspx


Fig. 2. Distribution of air quality monitoring stations in Taipei City. Stations A1 (Yonghe) and A2 (Sanchong) are traffic stations, Stations A3 (Songshan) and A4 (Shilin) are
general stations, and Station A5 is a park station.
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stable convergence from the developed model, a transformation
that centers the mean to 0 and the standard deviation to 1 is car-
ried out during data pre-processing. The transformation formula
is defined as follows.

X� tð Þ ¼ X tð Þ � X
r

ð3Þ

where X� tð Þ is the transformation of input data in the tth time. X and
r are the average and standard deviation of input data, respectively.

The performance of deterministic forecast models is evaluated
by three criteria, i.e. the Root-Mean-Square-Error (RMSE), the
goodness-of-fit with respect to the benchmark (Gbench) and the
Critical Success Index (CSI), defined as follows.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

bY tð Þ � Y tð Þ
� �2

vuut ; RMSE � 0 ð4Þ

Gbench ¼ 1�
PT

i¼1
bY tð Þ � Y tð Þ

� �2

PT
i¼1 Y tð Þ � Ybench tð Þð Þ2

0B@
1CA� 100%; Gbench � 100%

ð5Þ

CSI ¼ Hits
HitsþMissesþ False alarms

� �
� 100%; CSI � 100% ð6Þ

where bY tð Þ and Y tð Þ is the forecasted and observed values of the
output variable at the tth time, respectively. Ybench tð Þ is the observed
data shifted backwards by one or more time lags, e.g. for the nth-
step-ahead forecast, and Ybench tð Þ = Y t � nð Þ. Hits denotes the inter-
section area between the observed and forecasted values. Misses
denotes the range of the observed value that is missed by the range
of the forecasted value. False alarms denotes the part of the fore-
casted value that does not overlap a range of the observed value.
It is clear from these definitions that models with higher Gbench

and CSI values but lower RMSE values would produce better
performances.

The performance of probabilistic forecast models is evaluated
by two criteria, i.e. the Containing Ratio (CR) and the average
Relative Band-width (RB), which assess the goodness of the predic-
tion bounds (Biondi and De Luca, 2013; Xiong and O’Connor, 2008).
The CR is defined as the ratio of the number of observed data envel-
oped by its prediction bounds to the total number of observed data.
The RB is defined as the ratio of the band-width of the prediction
bounds to the corresponding observed data, which can be used
to eliminate the impact of data magnitude on the band-width of
the prediction bounds. Their mathematical formulas are described
below.

N tð Þ ¼ 1; if ql tð Þ � bZ tð Þ � qu tð Þ
� �

0; else

(
ð7aÞ

CR ¼
PN

t¼1N tð Þ
N

� 100% ð7bÞ

RB ¼ 1
N

XN
t¼1

qu tð Þ � ql tð Þ
Z tð Þ

� �
ð8Þ

where ql tð Þ and qu tð Þ are the lower and upper boundaries of the
forecasted data corresponding to a given confidence level at time
t, respectively. The value of N tð Þ is either 0 or 1, in which 0 indicates
the observed datum falls outside of its prediction bounds while 1
indicates the observed datum falls within its prediction bounds. It
is clear from these definitions that models with higher CR values
but lower RB values would produce better performances.
4. Results and discussion

The goal of this study is to produce probabilistic forecasts and
reduce the predictive distribution to a small range. The results
show that point forecasts can be improved by the ANFIS (compared
to those of the benchmark BPNN) and probabilistic forecasts can be
improved by the MBUP (compared to those of the benchmark
UBUP). We would like to remark that it only consumes about 40-
second computation time to produce the deterministic (within
30 s) and the probabilistic (within 10 s) PM2.5 forecasts for Taipei
City. The computation was conducted by a HP computer (Intel�



Table 2
Improvement rates of two indicators (Gbench, RMSE and CSI) in the testing stages of
the multi-step-ahead deterministic PM2.5 forecast models (the ANFIS model in
comparison with the BPNN model).

Y. Zhou et al. / Science of the Total Environment 711 (2020) 134792 7
CoreTM i5). More results and findings are presented: preliminary
analysis (Section 4.1), deterministic PM2.5 forecasts (Section 4.2),
and probabilistic PM2.5 forecasts and summarization (Section 4.3).
Station name Horizon Improvement rate* (%)

Gbench RMSE CSI

A1 t + 1 2.15 8.08 2.45
t + 2 13.01 16.31 11.27
t + 3 15.20 29.89 13.52
t + 4 21.27 36.51 19.46

A2 t + 1 3.16 8.08 2.78
t + 2 11.05 17.08 12.38
t + 3 11.45 29.24 14.07
t + 4 14.52 37.09 16.10

A3 t + 1 2.18 5.98 2.20
t + 2 3.28 8.17 4.84
t + 3 5.57 11.50 6.63
t + 4 8.19 16.59 10.37

A4 t + 1 2.87 6.65 2.15
t + 2 3.88 9.48 4.39
t + 3 5.57 11.56 7.24
t + 4 7.29 15.56 9.86

A5 t + 1 1.97 3.83 2.09
t + 2 2.39 5.68 3.38
t + 3 3.76 6.58 4.22
t + 4 4.39 7.72 5.66

Regional t + 1 2.27 6.33 2.11
t + 2 6.12 13.95 8.14
t + 3 6.91 19.15 9.36
t + 4 9.73 22.30 11.13

⁄Improvement rate of Gbench ¼ Gbench ANFISf g�Gbench BPNNf gð Þ
Gbench BPNNf g � 100%.

Improvement rate of RMSE ¼ RMSE BPNNf g�RMSE ANFISf gð Þ
RMSE BPNNf g � 100%.

Improvement rate of CSI ¼ CSI ANFISf g�CSI BPNNf gð Þ
CSI BPNNf g � 100%.
4.1. Preliminary analysis of PM2.5

Table 1 presents the statistic indexes of seasonal PM2.5 concen-
tration at Stations A1–A5. We notice that the values of the maxi-
mum and average concentrations as well as standard derivation
at traffic stations (A1 and A2) are the highest while those in the
park station (A5) are the lowest, which could be corresponding
to the primary sources of particulate matters at a station. For
instance, air pollutant emission from vehicle exhaust is the pri-
mary source of particulate matters at traffic stations, air pollutant
emission from residential and commercial activities is the primary
source of particulate matters at general stations, and atmospheric
transport is the primary trigger of particulate matters at the park
station. In other words, transportation is a stronger driving force
of air pollutants than human activities in Taipei City. In comparison
to other input variable selection techniques (e.g. Principal Compo-
nent Analysis, and Filter Algorithms), the Partial Mutual Informa-
tion (PMI) method (Sharma, 2000) has the merit that it can
estimate both linear and nonlinear dependence between two vari-
ables while possessing wider applicability in the environmental
domain (Bowden et al., 2005; Fernando et al., 2009; Galelli et al.,
2014, code sources: http://ivs4em.deib.polimi.it/). Other than the
Pearson and Spearman correlation coefficients, the Kendall tau
coefficient (Maidment, 1993) has the merit that input variables
do not need to meet the hypothesis of following a Gaussian distri-
bution owing to its gift of non-parametric statistical analysis, and
therefore this method is commonly used to extract the non-
linear correlation between two variables. As a result, the PMI and
Kendall tau coefficient methods are introduced to implement the
input variable selection in this study. According to the highest val-
ues of the PMI (�0.1) (Bowden et al., 2005) and the Kendall tau
coefficient (�0.5) (Zhou et al., 2019a,b), time lags identified by
both methods are the consistent. In brief, the time lags of air qual-
ity factors are set as 1 h–4 h for traffic stations (A1 and A2) and
1 h–2 h for general and park stations (A3, A4, –A5) while the time
lags of meteorological factors are set as 1 h–4 h.
Table 1
Statistic indexes of seasonal PM2.5 concentration at five air quality monitoring stations in

Season Statistic index (lg/m3) Air Quality Mon

A1

Spring max 377
average 22
min 0
std* 16

Summer max 226
average 13
min 0
std 10

Autumn max 264
average 17
min 0
std 13

Winter max 358
average 22
min 0
std 16

Annual max 377
average 20
min 0
std 14

*Standard deviation.
4.2. Performance of deterministic forecasts

As known, a longer lead time implies lower forecast accuracy.
To be consistent with the time periods (AM: 8:00–11:00 and PM:
14:00–17:00) of intensive human activities, lead times up to 4 h
(t + 1–t + 4) are selected as the forecasting horizon steps to provide
Taipei City.

itoring Stations

A2 A3 A4 A5

358 259 278 147
25 18 15 11
0 0 0 0
14 11 10 7

215 155 167 88
14 11 9 6
0 0 0 0
9 7 6 4

251 181 195 103
18 13 11 7
0 0 0 0
11 9 8 6

340 246 264 140
24 18 15 10
0 0 0 0
14 11 10 7

358 259 278 147
22 15 14 9
0 0 0 0
13 9 9 6

http://ivs4em.deib.polimi.it/
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high forecast accuracy while reducing human health risks. There-
fore, forecast horizons (lead time = 4 h) from t + 1 up to t + 4 at a
time step of 1 h are specified to validate the two deterministic
PM2.5 forecast models constructed by the ANFIS and the BPNN.
After implementing trial-and-error procedures during model con-
figuration based on the training and validation datasets, the
parameters of the ANFIS model constructed for each station (e.g.
Station A1) are summarized here. There are 52 (=N1) input vari-
ables, 3 (=N2) membership functions (high, medium and low),
468 (N3 = 3 � N1 � N2) nonlinear parameters in Layer 1, 156
(N4 = N1 � N2) fuzzy rules using the subtractive clustering algo-
rithm (Lohani et al., 2014; Chang et al., 2015), 1 (=N5) output vari-
Fig. 3. Multi-step-ahead PM2.5 forecast results of BPNN and ANFIS models in the testin
(Songshan) and the park Station A5 (Yangming). The test event with maximal PM2.5 con
PM2.5 concentration reaching 180 mg/m3 occurred at Station A3. The test event with ma
able under the single output pattern, and 159 (N6 = N2 � (N1 + N5))
linear parameters in Layer 4. In the SDA, the parameters of learning
rate (g), decreasing factor (a), increasing factor (b) and maximal
generation (Gmax) are set as 0.01, 0.9, 1.1 and 1000, respectively.
The parameters of the BPNN model consist of the maximal gener-
ation (Gmax), the initial learning rate (mu), the increasing factor of
mu, the decreasing factor of mu and the maximal value of mu of
both models, which are set as 1000, 0.001, 10, 0.1 and 1000,
respectively.

Taking horizon t + 4 shown in Table 2 for example, the improve-
ment rates in terms of Gbench, RMSE and CSI values reach 21.27%,
36.51% and 19.46% at Station A1, respectively, but only remain
g stages at horizon t + 4 at the traffic Station A1 (Yonghe), the general Station A3
centration reaching 250 mg/m3 occurred at Station A1. The test event with maximal
ximal PM2.5 concentration reaching 90 mg/m3 occurred at Station A5.



Table 4
Model performance of probabilistic PM2.5 forecasts in the testing stage at the traffic
Station A1.

Model Indicator Horizon

t + 1 t + 2 t + 3 t + 4

MBUP1 CR(%) 97.20 95.33 93.12 92.05
RB 0.09 0.11 0.15 0.19

UBUP1 CR(%) 97.20 92.20 87.57 83.55
RB 0.09 0.13 0.21 0.26

All of the CR and RB values are computed for the 90% prediction intervals.
1 MBUP is the Multivariate Bayesian Uncertainty Processor.
2 UBUP is the Univariate Bayesian Uncertainty Processor.
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4.39%, 7.72% and 5.66% at Station A5, respectively. There are three
main findings. 1) The BPNN model produces unstable and inferior
performance for PM2.5 forecasting at each air quality monitoring
station and in the whole study region (Taipei City). 2) The ANFIS
model performs the best not only at individual air quality monitor-
ing stations but also in the whole region (Taipei City). 3) The ANFIS
model has the best performance in the testing stages at all stations.
It appears that the ANFIS model produces much higher Gbench and
CSI values but much smaller RMSE values than the BPNN model in
both training and testing stages.

The results demonstrate that forecasts at horizons higher than t
+ 1 are more accurate using the subtractive clustering mechanism
and the fuzzy inference system of the ANFIS model. In other words,
the subtractive clustering-based fuzzy inference system can allevi-
ate time shift phenomena. This reveals that the uncertainty of
model input and model reliability as well as forecast accuracy for
future horizons can be improved significantly.

To clearly differentiate the abilities of BPNN and ANFIS models,
both models are tested by three selected PM2.5 events (Park Station
A5 with its maximal PM2.5 concentration reaching 90 mg/m3, Gen-
eral Station A3 with its maximal PM2.5 concentration reaching
180 mg/m3 and Traffic Station A1 with its maximal PM2.5 concen-
tration reaching 250 mg/m3). Model performance is assessed by
the goodness-of-fit between observations and forecasts at horizons
t + 3 and t + 4 in the testing stages, as shown in Fig. 3. The results
indicate that the ANFIS model is able to forecast well at horizons
t + 3 and t + 4 whereas the BPNN model has obvious time-lag phe-
nomena and produces comparatively large gaps between observa-
tions and forecasts. That is to say, the BPNN model fails to forecast
PM2.5 concentration adequately at horizons more than t + 3. It
demonstrates that the ANFIS model can effectively trace the trails
of PM2.5 events, significantly mitigate time-lag effects, and produce
accurate and reliable multi-step-ahead PM2.5 forecasts. From the
perspective of air pollutant emission mechanisms (e.g. Yu and
Stuart, 2017; Li et al., 2018; Lin and Zhu, 2018; Wu et al., 2018b),
the primary emission associated with meteorological conditions
(e.g. Park Station A5) makes insignificant influence on BPNN and
ANFIS models but the secondary emission associated with meteo-
rological conditions (e.g. Traffic Station A1) makes a significant dif-
ference between BPNN and ANFIS models. Taipei City has
undergone fast development, and the regional air quality of the
city frequently interacts with intensive human activities, traffic
loads and commercial trading. A high PM2.5 event usually corre-
sponds to the secondary processes either from regional transporta-
tion of the aged secondary aerosol or the secondary transformation
of gaseous pollutants. A PM2.5 event driven by the primary or nat-
ural process would be expected to correlate with local weather
conditions and the primary emissions. The BPNN model produces
Table 3
Comparison of the median forecasts on PM2.5 concentration in the testing stages at the tr

Horizon

MBUP1 (Probabilistic forecasts) Gbench(%)
RMSE(mg/m3)
CSI (%)

UBUP2 (Probabilistic forecasts) Gbench(%)
RMSE(mg/m3)
CSI (%)

ANFIS3 (Deterministic forecast) Gbench(%)
RMSE(mg/m3)
CSI (%)

1 MBUP is the Multivariate Bayesian Uncertainty Processor.
2 UBUP is the Univariate Bayesian Uncertainty Processor.
3 ANFIS is the Adaptive Neural Fuzzy Inference System.
better performance at the general stations (A3 and A4) and the
park station (A5) than at traffic stations (A1 and A2). Nevertheless,
the ANFIS model gains better improvement rates of Gbench and
RMSE (see Table 2) at traffic stations (A1 and A2) and general sta-
tions (A3 and A4) than at the park station (A5). The ANFIS model
not only can greatly improve the forecast accuracy at traffic sta-
tions (secondary processes) and general stations (primary pro-
cesses) by clustering the emission mechanisms of the aged
secondary aerosol but also can perform as well as the BPNN model
at the park station (natural processes).

Although the forecasts made by the ANFIS model provide sub-
stantial evidence of good model performance and gain much more
confidence in air quality forecasting, the forecasted values, unfor-
tunately, are prone to systematically under-predicting PM2.5 series
for extreme PM2.5 events (Fig. 3). As known, uncertainties reside in
inputs (e.g. meteorological and air quality factors) such that the
structure and parameters of the ANFIS model could be the sources
of time-lag effects encountered in forecasting. Bearing this in mind
as motivation, two processing approaches (UBUP & MBUP) are
used to quantify the predictive uncertainty under the hypothesis
that there is no input uncertainty. The following subsection will
concentrate on the comparison between UBUP and MBUP
approaches for probabilistic PM2.5 forecasting based on the results
obtained from the ANFIS model.

4.3. Performance of probabilistic PM2.5 forecasts

For making the median forecasts (e.g. at Traffic Station A1) at
horizons from t + 1 up to t + 4, the values of the Gbench, RMSE and
CSI closely associated with UBUP and MBUP approaches in the test-
ing stages are listed in Table 3. It reveals that both approaches pro-
duce better forecast results than the deterministic forecast model
configured by the ANFIS. Additionally, the MBUP approach is supe-
affic Station A1.

t + 1 t + 2 t + 3 t + 4

99.1 98.2 96.1 94.4
3 5 7 10
92.7 91.3 89.6 87.4

99.1 97.8 94.7 92.7
3 6 9 12
92.7 89.2 85.3 82.8

99 96.3 93.3 91.6
5 7 10 13
91.0 88.5 83.3 80.7



Fig. 4. Comparison of transformed data using the UBUP and MBUP approaches for probabilistic PM2.5 forecasts at the traffic Station A1 from horizons t + 1 up to t + 4 in the
testing stages. W0 and Wm (m = 1, 2, 3, 4) are the transformed Gaussian datum of the observed PM2.5 concentration at the current time and at lead time m, respectively. Sm
(m = 1, 2, 3, 4) is the transformed Gaussian datum of the deterministic forecast of PM2.5 concentration at lead time m.
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Fig. 5. Predictive Quantile-Quantile (QQ) plots for probabilistic PM2.5 forecasts at
the traffic Station A1 from horizons t + 3 up to t + 4 in the testing stages. The
quantile of observed datum is the probability value corresponding to the observed
datum while the quantile of U[0, 1] is the probability value corresponding to the
forecasted datum.
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rior to the UBUP one in the testing stages. Take horizon t + 4 for
example, the MBUP approach can improve the Gbench and the CSI
values by 3.09% and 8.30%, respectively, and reduce the RMSE
value by 23.08% in the testing stage, in comparison to the deter-
ministic forecast model. The predictability of the MBUP approach
for future horizons is significantly better than that of the determin-
istic forecast model. From the perspective of indicator characteris-
tics, the RMSE and CSI are sensitive to medium-high PM2.5

concentrations while the Gbench is sensitive to the total PM2.5 con-
centrations. That means the MBUP approach not only can largely
increase forecast accuracy at medium-high magnitudes but also
can improve the goodness-of-fit to the total PM2.5 concentrations
at the same time.

For the probabilistic forecasts (e.g. Traffic Station A1) at hori-
zons from t + 1 up to t + 4 in the testing stage, the values of CR
and RB corresponding to UBUP and MBUP approaches are listed
in Table 4. It reveals that the MBUP approach produces better per-
formance at all horizons whereas the UBUP only performs well at
horizons up to t + 2 (CR is higher than 90%, and RB is lower than
0.15). For horizon t + 4, the MBUP approach can improve the CR
value by 10.17% as well as reduce the RB value by 26.92% in the
testing stage, as compared to the UBUP one. That is to say, the
MBUP approach not only can significantly increase probabilistic
forecast accuracy indicated by a narrow prediction bound (in terms
of CR values) but also can eliminate the impact of PM2.5 concentra-
tion magnitude on the band-width of the prediction bounds (in
terms of RB values) simultaneously.

The reasons that the UBUP approach has inferior forecast accu-
racy than the MBUP one from horizons t + 2 to t + 4 consist of: the
former employs a univariate strategy to model the predictive
uncertainty of PM2.5 forecasts at each time step independently,
whereas the latter employs a multivariate strategy to model the
predictive uncertainty of PM2.5 forecasts between two time steps.
In other words, the former only can consider the nonlinear bivari-
ate dependence between observed and forecasted data while the
latter can extract the nonlinear multivariate (�3) dependence
structure between observed and forecasted data owing to the sub-
stantial difference between Eqs. (1) and (2) (m = 2, 3, 4). In addi-
tion, the forecast accuracy of the UBUP approach is equivalent to
that of the MBUP one at horizon t + 1 (Table 4) because there is
no difference between Eqs. (1) and (2) at this horizon (m = 1).
Fig. 4 further demonstrates that the transformed Gaussian data
used in the MBUP approach substantially differ from those of the
UBUP one at horizons t + 2 up to t + 4.

Furthermore, QQ plots are adopted to assess the reliability of
probabilistic forecasts. Fig. 5 presents the predictive QQ plots of
probabilistic PM2.5 forecasting (e.g. at Traffic Station A1) from hori-
zons t + 3 up to t + 4 in the testing stages. The predictive QQ plots
shown in Fig. 5(a) can be elaborated point by point as follows. (1) If
all the points fall on the 1:1 line, the predictive distribution agrees
perfectly with the observations. (2) If the probability value corre-
sponding to the observed datum is 1.0 or 0.0, the corresponding
observed datum lies outside the prediction range, which implies
predictive uncertainty is significantly underestimated. (3) If the
probability values corresponding to the observed data cluster
around the midrange, predictive uncertainty is overestimated. (4)
If the probability values corresponding to the observed data cluster
around the tails, the predictive uncertainty is underestimated. (5)
If the probability values corresponding to the observed data at
the theoretical median are higher/lower than theoretical quantiles,
the predictions systematically underpredict/overpredict the
observed data (DeChant and Moradkhani, 2015; Laio and Tamea,
2007). According to Fig. 5(b) and (c), it indicates that the points
of the QQ plot generated by the MBUP approach are closer to the



12 Y. Zhou et al. / Science of the Total Environment 711 (2020) 134792
1:1 line, in comparison to that of the UBUP one. In other word, the
MBUP approach produces higher reliability but smaller bias than
the UBUP one.

The results demonstrate that the MBUP approach can effec-
tively quantify predictive uncertainty owing to the better agree-
ment between the predictive distribution and the observations.
This finding indicates that the MBUP approach performs signifi-
cantly better from the perspective of reliability.

To clearly differentiate the abilities of the UBUP and the MBUP
approaches, three PM2.5 events that test the deterministic forecast
models are selected to test both approaches through assessing if
the observed PM2.5 concentrations lie within the 90% prediction
interval at horizon t + 4 in the testing stages, as shown in Fig. 6.
Fig. 6. Probabilistic PM2.5 forecasts for air quality monitoring Stations A1, A3 and A5 at
250 mg/m3 (high concentration, Station A1), (b) 180 mg/m3 (medium concentration, Statio
constructed models.
The results show that: (1) most of the observed PM2.5 concentra-
tions fall within the 90% prediction intervals generated by both
approaches, and (2) the MBUP approach provides a predictive dis-
tribution narrower than that of the UBUP one. The goal of proba-
bilistic forecasting is to maximize the sharpness of the predictive
distributions, where sharpness refers to the concentration of the
predictive distributions. Thus, the MBUP approach is superior to
the UBUP one.

In brief, the MBUP approach not only can produce more stable
and accurate probabilistic forecasts but also can alleviate the phe-
nomenon of systematically underpredicting PM2.5 series for
extreme PM2.5 events by means of extracting the nonlinear multi-
variate dependence structure among observed and forecasted vari-
horizon t + 4. Three PM2.5 events with maximal PM2.5 concentrations exceeding (a)
n A3) and (c) 90 mg/m3 (low concentration, Station A5) were selected for testing the
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ables Hm, Hm-1 and Sm. In addition, it is worth noting that even
though the MBUP approach can mitigate the phenomenon of
underprediction, it cannot fully eliminate the under-estimated pre-
dictive uncertainty.

5. Conclusion

In this study, we explored a MBUP approach for modeling
probabilistic PM2.5 forecasts. The demand for the MBUP approach
in place of the UBUP one is driven by real-world applications in
the interest of reducing the predictive uncertainty of real-time
PM2.5 forecasting. At first, two ANNs (BPNN and ANFIS) were con-
figured to establish deterministic forecast models for the regional
PM2.5 concentrations of Taipei City in Taiwan. The comparison
analysis between BPNN and ANFIS models was to identify a model
that provides accurate deterministic forecasts for making proba-
bilistic forecasts. Then, two BUP post-processing techniques
(MBUP and UBUP) were explored to convert the deterministic
forecasts of the ANFIS model into probabilistic forecasts. As com-
pared with the UBUP approach, the main merit of the MBUP
approach lies in capturing the nonlinear multivariate (�3) depen-
dence structure between observed and forecasted data as well as in
alleviating the uncertainty encountered in multi-step-ahead PM2.5

forecasting.
The results of the two deterministic forecast models applied to

the regional PM2.5 series of Taipei City demonstrated that the
ANFIS model prominently outperformed the comparative BPNN
model for all the training, validation and testing cases at different
horizons. It meant that the ANFIS model could provide much more
accurate forecasts on the PM2.5 series at long forecast horizons and
significantly alleviate time shift phenomena than the BPNN model.
The reason that the ANFIS model succeeded in achieving satisfac-
tory multi-step-ahead forecasts could be owing to the key strategy:
the incorporation of the clustering-based fuzzy inference system
into ANNs for learning different air pollutant emission mechanisms
(i.e. primary, secondary and natural processes). However, the
ANFIS model also encountered the technical bottleneck of under-
predicting PM2.5 peaks.

The MBUP can explicit configure the nonlinear multivariate
dependence between observed and forecasted data and quantify
the predictive uncertainty of probabilistic forecasts. The results
of the two probabilistic post-processing techniques applied to pro-
cessing the deterministic forecasts of the ANFIS model demon-
strated that the MBUP approach was distinguishably superior to
the UBUP one for all the training, validation and testing cases at
different horizons, in terms of CR and RB values as well as the
90% prediction intervals. The results indicated that the MBUP
approach could provide much accurate forecasts on the PM2.5 ser-
ies at long forecast horizons and significantly alleviate under-
prediction phenomena than the UBUP one. The reason that the
MBUP approach succeeded in attaining favorable probabilistic
forecast results could be owing to the core strategy: the effective
extraction of the nonlinear multivariate dependence structure
between observed and forecasted data for lessening predictive
uncertainty by virtue of the multivariate Bayesian conditional
probability distribution. The limitation of the MBUP approach is
the need to re-calibrate the parameters of the MBUP when consid-
ering the uncertainty of meteorological forecasting. In light of
methodology reliability, future works can concentrate on compar-
ing BUPs with other post-processing probabilistic forecasting tech-
niques (e.g. GLUE and Kalman Filtering) for PM2.5 forecasting. In
light of methodology transferability, future research could extend
the MBUP methodology from small- and medium-scale (a local
city) datasets to large-scale ones (examining a large number of
time series at a regional or national scale).
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