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A B S T R A C T

In the face of multiple habitat alterations originating from both natural and anthropogenic factors, the fast-
changing environments pose significant challenges for maintaining ecosystem integrity. Machine learning is a
powerful tool for modeling complex non-linear systems through exploratory data analysis. This study aims at
exploring a machine learning-based approach to relate environmental factors with fish community for achieving
sustainable riverine ecosystem management. A large number of datasets upon a wide variety of eco-environ-
mental variables including river flow, water quality, and species composition were collected at various mon-
itoring stations along the Xindian River of Taiwan during 2005 and 2012. Then the complicated relationship and
scientific essences of these heterogonous datasets are extracted using machine learning techniques to have a
more holistic consideration in searching a guiding reference useful for maintaining river-ecosystem integrity. We
evaluate and select critical environmental variables by the analysis of variance (ANOVA) and the Gamma test
(GT), and then we apply the adaptive network-based fuzzy inference system (ANFIS) for an estimation of fish
bio-diversity using the Shannon Index (SI). The results show that the correlation between model estimation and
the biodiversity index is higher than 0.75. The GT results demonstrate that biochemical oxygen demand (BOD),
water temperature, total phosphorus (TP), and nitrate-nitrogen (NO3–N) are important variables for biodiversity
modeling. The ANFIS results further indicate lower BOD, higher TP, and larger habitat (flow regimes) would
generally provide a more suitable environment for the survival of fish species. The proposed methodology not
only possesses a robust estimation capacity but also can explore the impacts of environmental variables on fish
biodiversity. This study also demonstrates that machine learning is a promising avenue toward sustainable
environmental management in river-ecosystem integrity.

1. Introduction

Concepts of conservation and restoration of natural ecosystems have
gained an increasing interest in the last decades. As known, rapid ur-
banization, industrialization, and developments in catchment areas
might have caused great impacts on, or even ruin, riverine ecosystems
by producing high levels of nitrogen and phosphorus nutrients as well
as inducing changes in water quality and flow patterns (Fashola et al.,
2016; Förstner & Wittmann, 2012; Simmler et al., 2016). As such, ex-
ploring an effective ecosystem management plan requires careful con-
sideration of the trends and changes in the environmental and biolo-
gical conditions rooted in the long-term monitoring data.

Many studies have documented the crucial role of flow regime
which is now viewed as an essential part of river ecosystem integrity

(Acreman et al., 2014; Arthington et al., 2006 & 2010; Gillespie et al.,
2015; Olden and Naiman, 2010; Papadaki et al., 2016; Tsai et al.,
2016). In Taiwan, rivers possess high variations in their flow patterns
from upstream to downstream, depending on the geographical condi-
tion as well as human activities. Moreover, precipitation patterns are
highly uneven in space and time, with typhoons periodically occurring
almost every year. These characteristics have been known to cause
significant impacts on river ecosystems (Chang et al., 2015; Lee et al.,
2016; Milliman et al., 2017). The Taiwan Eco-hydrologic Indicator
System (TEIS) developed by Suen and Herricks (2006) connects hy-
drologic statistics with river organism requirements (fish species). The
TEIS can be used as a tool to analyze the influences of hydrologic
variation on communities of fish species (Chang et al., 2008 & 2013;
Suen and Eheart, 2006). In addition to flow regime, water quality
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describing the physicochemical characteristics of a water body is un-
doubtedly a key factor affecting riverine ecosystems that water quality
exacerbation due to industrial and agricultural development has been
studied to assess its threat to certain fish species (Arthington et al.,
2016; Hofmann et al., 2015; Liu et al., 2012; Tsai et al., 2017) or the
cause of an alteration in fish communities (Chang et al., 2011; Cheng
et al., 2018; Piperac et al., 2016; Segurado et al., 2016; Xu et al., 2016).
Since flow regime and water quality are highly related to each other,
any changes in either component may impose influences on the fish
community to a certain extent (Cheng et al., 2016; Destouni et al.,
2017; Marzin et al., 2013; Schinegger et al., 2012). For instance,
Nilsson and Renöfält (2008) provided examples of how low flow con-
ditions and changes in water quality could impact ecosystem processes
and cause ecological problems. Whitehead et al. (2009) stated that in-
creased water temperatures would affect chemical reaction kinetics and
freshwater ecological status, and lower flows that reduce velocities and
higher water residence times in rivers could induce a series of ecolo-
gical responses.

However, actual applications in environmental management has
been hampered by the lack of practical cases and methodologies. Most
previous studies tended to assess the effects of a single factor on aquatic
organisms and used statistical methods to obtain the correlation be-
tween environmental factors and fish communities (Kail et al., 2012;
Kwon et al., 2012; Moerke and Lamberti, 2006), yet rare researches
have considered the synergistic effects of multiple factors on fish bio-
diversity (Meng et al., 2009; Tsai et al., 2017; Zhao et al., 2018). Un-
doubtedly, there is an urgent need to conduct researches through novel
data-driven techniques to comprehensively explore the complex inter-
actions among various factors in an ecosystem and to model the effects
of hydrological and water quality factors on the aquatic biota for sui-
tably managing water resources and river ecosystems.

Machine learning techniques, such as artificial neural networks
(ANNs), are known for their provision of reliable outputs through
learning historical data. ANNs are predominant in extracting significant
features from complex databases and are recognized for their out-
standing abilities in modeling complex nonlinear systems. As a result,
ANNs have been widely used for solving a wide range of fields with

complex systems, such as hydrological (Chang et al., 2018; Chang and
Tsai, 2016; Chen et al., 2018; Tsai et al., 2015; Uen et al., 2018) and
eco-environmental fields (Barzegar et al., 2018; Chang et al., 2017; Dou
and Yang, 2018; Forio et al., 2017; Halgamuge and Davis, 2019; Jones
et al., 2017; Kaab et al., 2019; Nieto et al., 2013; Shi et al., 2018;
Sannigrahi et al., 2019). Among them, the Adapted Network-Based
Fuzzy Inference System (ANFIS) that combines fuzzy logic systems with
a learning algorithm to construct the if-then rules and extract knowl-
edge provides a promising alternative for feature extraction and pre-
diction. The ANFIS has been satisfactorily applied to eco-hydrological
and environmental fields (Blanes-Vidal et al., 2017; Hong et al., 2016;
Nabavi-Pelesaraei et al., 2018; Woznicki et al., 2016; Yaseen et al.,
2017; Zhou et al., 2019). However, many studies mentioned that
overtraining could be one of the major weaknesses associated with
modeling ANNs due to the improper selection of inputs and their data
length for training (Chang et al., 2016; Remesan et al., 2009). The
Gamma test (GT) introduced by Stefánsson et al. (1997) can success-
fully overcome these issues and sort input variables according to their
importance and effects for training any smooth model before model
construction. The GT has been used in various environmental studies
(Chang et al., 2016; Goyal et al., 2014; Noori et al., 2015; Remesan
et al., 2008; Tian et al., 2016), which has implied the GT could help
minimize the guesswork in modeling ANNs by identifying critical input
variables.

To achieve sustainable environmental management, it is necessary
to consider the uniqueness of the physical habitat environment and the
relationship to their inhabitant biota on a local scale. In this study, we
intend to develop a sophisticated methodology capable of extracting
knowledge from limited heterogeneous datasets to form if-then rules for
judging the associated fish biodiversity, with an aim to build an ANFIS
model for estimating fish biodiversity based on environmental variables
(flow regime and water quality). Specific objectives are: (1) identify key
environmental variables effectively for modeling the complex eco-hy-
drological system by the GT; (2) construct a reliable ANFIS model for
estimating fish biodiversity; (3) explore the relationship between en-
vironmental variables and fish biodiversity based on the if-then rules of
the ANFIS; and (4) provide a guiding reference for decision-makers to

Fig. 1. Study area and locations of river flow gauge stations and fish sampling sites.
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maintain the integrity of a river ecosystem.

2. Study area and data collection

2.1. Study area

The Xindian River is one of the three major tributaries of the Tamsui
River in northern Taiwan (Fig. 1). With a length of 81 km and a large
catchment area of 921 km2, the Xindian River flows through the New
Taipei City and the Taipei City. In this watershed, the landform has a
considerable variation in elevation and the climatic feature is that it is
usually wet and rainy. The Beishi River is one of the main tributaries in
the upstream, where tea orchards and tea leisure farms are the main
land-use types. The Feitsui Reservoir is situated in the middle of the
Xindian River to meet the water demand of over 4 million residents in
the vast Taipei region.

2.2. Data collection

To explore the complicated relationships among environmental
factors and fish bio-diversity, we collected data of river flow (daily),
water quality (monthly), and fish sampling across the Xindian River
basin during 2005 and 2012. These data were monitored by different
governmental agencies. To describe the river status and compared it
with other environmental variables under the same time scale, we
converted the flow data into monthly flow regimes by a total of 9
Taiwan Eco-Hydrologic Indicator System (TEIS; Suen and Herricks,
2006; Chang et al., 2013; Tsai et al., 2015 & 2016) variables (Table 1).

As hydro-chemo-biological factors are known to control fish species
presence and abundance as well as shape the community structure
along with the unidirectional river networks (Cheng et al., 2018), we
gathered a total of 134 fish survey samples at eight sampling sites
(Table 2). Fish surveys were conducted by either electroshock or creel
surveys at eight sampling sites. Meanwhile, temperature (Temp), hy-
drogen ions concentration (pH), electric conductivity (EC), turbidity,
dissolved oxygen (DO), suspended solids (SS), biochemical oxygen de-
mand (BOD), ammonia nitrogen (NH3–N), nitrate-nitrogen (NO3–N)
and total phosphorus (TP) were also collected (Table 3) at the same
periods of the fish surveys.

3. Methods

To assess the complex relationships among river flow, water quality,
and fish biodiversity for providing guiding references of species con-
servation, we proposed a sophisticated three-phase data-mining meth-
odology comprising the analysis of variance (ANOVA), the Gamma test
(GT), and the Adapted Network-Based Fuzzy Inference System (ANFIS)
(Fig. 2). We first converted streamflow and fish sampling data into flow
regime and fish biodiversity index, respectively (Section 3.1). Following
that, the ANOVA (Section 3.2) was used to capture the environmental

divergence of fish sampling sites, and the GT (Section 3.3) was per-
formed to identify the key variables as the model inputs for reducing
model complexity and increasing model stability and reliability. Then
the ANFIS (Section 3.4) model was trained and validated to increase
model accuracy and scalability. At last, we explored the relationships
among selected variables using the if-then rules revealed by the ANFIS
model (Fig. 2).

3.1. Fish diversity index – Shannon Index (SI)

The SI was proposed by Shannon (1948) as a common indicator to
assess ecological diversity (Keylock, 2005; Spellerberg and Fedor,
2003). It has been widely used to estimate the mutual proportion of
species in a community under the assumption that an individual is
randomly investigated from an infinite community, and can be calcu-
lated as:

∑= −
=

SI p pln
i

S

i i
1 (1)

where S is the number of species of the community, and pi is the pro-
portion of the ith species to the total number of individuals.

3.2. Statistical technique - analysis of variance (ANOVA)

The ANOVA is a widely used procedure to partition observed var-
iances into different explanatory variables, which helps to determine
the relevant statistical significance (Lindman, 1974). To compare the
total deviation of the variables analyzed in the ANOVA, the F-test is
conducted using the following equation.

Table 1
Flow regime in a monthly scale.

Flow regime
(monthly scale)

Variables

TEIS m1 Mean of all positive differences between consecutive
values in the month corresponding to fish sampling.

TEIS m2 Mean of all negative differences between consecutive
values in the month corresponding to fish sampling.

TEIS m3 Mean streamflow of the respective month.
TEIS m4 1-day maximum streamflow of the respective month.
TEIS m5 1-day minimum streamflow of the respective month.
TEIS m6 3-day maximum streamflow of the respective month.
TEIS m7 3-day minimum streamflow of the respective month.
TEIS m8 10-day maximum streamflow of the respective month.
TEIS m9 10-day minimum streamflow of the respective month.

Table 2
Fish sample sites and corresponding survey years.

Sampling site Code Survey year Number of data

Kuolai F1 2005–2009, 2011–2012 24
Huliaotan F2 2011–2012 8
Pinglin F3 2005–2009, 2011–2012 24
Wulai F4 2005–2009, 2011–2012 24
Fushan F5 2005–2009, 2011–2012 24
Cukengba F6 2005–2009, 2011–2012 24
Zhitan F7 2005 2
Xiulang F8 2004, 2005 4

Table 3
Basic statistics of all variables in the Xindian River basin.

Minimum Maximum Median Average Standard
Deviation

Temp (°C) 11.20 32.00 22.65 22.90 3.99
pH 6.30 29.80 7.66 7.86 1.99
EC (μS/cm) 8.40 291.00 83.00 90.26 29.26
Turbidity

(NTU)
0.00 230.00 1.60 10.55 30.64

DO (ppm) 3.30 11.20 8.48 8.30 1.28
SS (ppm) 0.15 300.00 1.60 14.75 43.38
BOD (ppm) 0.01 3.40 0.80 0.88 0.56
NH3–N (ppm) 0.00 3.13 0.05 0.09 0.28
NO3–N (ppm) 0.00 4.59 0.38 0.41 0.43
TP (ppm) 0.00 0.52 0.03 0.04 0.07
TEIS m1 0.00 326.99 9.94 25.27 43.34
TEIS m2 0.02 122.82 5.64 13.23 19.97
TEIS m3 0.27 198.60 23.37 36.01 34.47
TEIS m4 1.47 2048.61 83.54 191.21 299.26
TEIS m5 0.00 78.11 6.18 12.40 14.95
TEIS m6 1.04 984.56 64.17 114.32 149.24
TEIS m7 0.00 78.41 8.62 14.85 16.48
TEIS m8 0.55 364.43 36.70 60.39 63.27
TEIS m9 0.00 103.33 11.89 19.46 20.63
Shannon Index 0.00 2.73 1.48 1.48 0.46
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where I is the total number of groups in the data set, J is the total
number of observational data, Yij is the jth observational data of the ith
group, and Y‾total is the average of the whole observational data. Then,
the probability (p-value) of a value of F is calculated to check if it is
greater than or equal to the observed value. The null hypothesis is re-
jected if this probability is less than or equal to a commonly used sig-
nificance level (α) of 0.05.

3.3. Gamma test (GT)

The GT proposed by Stefánsson et al. (1997) has been utilized to
select essential inputs by estimating the noise level presented in a data
set and to identify the best input variables without extensive model
development for each potential input combination. This technique is
used to select effective variables for modeling the highly non-linear eco-
environmental problem in this study. When the effective variables are
selected to form an input combination, they can reduce model com-
plexity and promote model reliability (Moghaddamnia et al., 2008;
Noori et al., 2011). To employ the GT, an observational data set of
input-output patterns can be described as:

≤ ≤x y i M{( , ): 1 }i i (3)

where the inputs ∈x Ri
m are m dimensional vectors with M length

confined to a certain closed bounded set ⊂C Rm, and the corresponding
outputs ∈y R are scalars.

The relationship of input-output patterns can be shown as:

= +y f x r( ) (4)

where f is a smooth function representing the system, and r is the noise
of a random variable.

Based on the Euclidean distance of the kth nearest neighbors XN(i,k)
for each vector Xi, the Delta function is defined by the following
equation.

∑= − ≤ ≤
=

δ k
M

X X k p( ) 1 (1 )M
i

M

N i k i
1

( , )
2

(5)

where p is the number of neighboring points.
The Gamma function of the output values is given as:

∑= − ≤ ≤
=

γ k
M

y y k p( ) 1
2
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i

M

N i k i
1

( , )
2

(6)

where yN i k( , ) are the y-values corresponding to the inputs Xi, which are
the kth nearest neighbors in the input domain.

A regression line is constructed for the p points (δ k( )M , γ k( )M ),
shown as follows.

= +γ Aδ Γ (7)

where A is the gradient. Γ, known as the Gamma statistic, is the in-
tercept of the regression line of γ k( )M versus gh δ k( ),  M which shows the
noise estimate for each subset of input variables. The bigger the  Γ value
is, the higher the complexity of the model is. In other words, if the Γ
value is big, the corresponding input combination can be regarded as
the worse combination; and if the Γ value is the closest to zero, the
corresponding input combination can be regarded as the best combi-
nation.

3.4. Adaptive network-based fuzzy inference system (ANFIS)

ANNs can usually achieve high estimation accuracies but have a
drawback of lacking explainability, which significantly limits their
applicability (Mount et al., 2016). The ANFIS introduced by Jang
(1993) considers the fuzzy inference system as a core fundamental and
combines it with the ANN for providing qualitative description and
reasoning processes of human-knowledge (Chang et al., 2005). This
study proposes a methodology that is capable of extracting rule-based
knowledge according to the input-output relation of a trained ANFIS
model for assessing the impacts of environmental variables on fish
biodiversity. The framework of the ANFIS (Fig. 3) includes five layers:
an input layer, a rule layer, an average layer, a consequent layer, and an
output layer. In this study, the ANFIS applies the Takagi-Sugeno fuzzy
model (TSK fuzzy model) to configuring the if-then rules of the fuzzy
inference system (the rule layer) and uses similar membership functions
in the same layer to build the principal structure. Taking two inputs, x1
and x2, in a fuzzy inference system and an output, y as an example, in
the first-order TSK fuzzy model, a simple rule set with two fuzzy if-then
rules can be described as:

= ∗ + ∗ +x A x B y p x q x rRule 1: If is and is then1 1 2 1 1 1 1 2 1 (8)

= ∗ + ∗ +x A x B p x q x rRule 2:If is and is then y1 2 2 2 2 1 2 2 2

where p, q, and r are linear parameters in the then-part of the first-order

Fig. 2. Study framework.
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TSK fuzzy model. By connecting the feedforward networks and the
supervised learning algorithm, the ANFIS can adjust all the parameters
properly to make itself have the ability of self-learning and self-orga-
nizing.

In this study, we focused on what selected variables cause the dif-
ference between the ANFIS rule-base. As we mentioned earlier, species
diversity can be considered as a kind of ecosystem integrity. Two main
environmental factors, i.e., flow regime and water quantity, in the river
ecosystem of this study were selected and qualified as the ANFIS inputs.
We assessed the species diversity condition using the ANFIS and dis-
cussed the connection between input variables and species diversity.

4. Results and discussion

This study proposes a machine learning methodology for exploring
the complex impacts of water quality and flow regime on fish com-
munities to comprehend the situations of the eco-hydrological system in
a river basin and to resolve the complex and interrelated conservation
and management issues.

4.1. Results of the ANOVA

In this study, we collected a total of 134 datasets, including water
quality, flow regime, and fish survey at 8 fish sampling sites (Table 2).
However, three fish sampling sites (Huliaotan (F2), Zhitan (F7), and
Xiulang (F8)) with limited datasets did not have the same number of
datasets as the other five sampling sites. Thus, we removed F2, F7, and
F8 from the ANOVA analysis. The remaining five sampling sites (Kuolai
(F1), Pinglin (F3), Wulai (F4), Fushan(F5), and Cukengba (F6), with a
total of 120 data sets (24 datasets from each sampling site), were used
to explore the differences of water quality factors and flow regime
among sampling sites using the ANOVA. The results were summarized
in Table 4.

It indicates that three water quality factors of DO, BOD, and NH3–N

are not significantly different in sampling sites. Moreover, the high DO
(8.1–8.5 ppm) and low BOD (0.8–0.9 ppm) at all the five stations
suggest good water quality. Thus, the fish species diversity (1.31–1.87)
is high overall. In the aspect of geographical difference, some water
quality variables, such as EC and SS, do make a significant difference
between different tributaries. The temperature variable also presents a
significant difference between F3 and F5, where the elevation of F5 is
significantly higher than that of F3. According to the results of SS, F5
performs significantly different from F1, F3, and F4. We notice that F5
has the highest SS concentration among sampling sites, which can be
because the frequent landslides in the surrounding area of F5 slump
eroded soil into the river channel when large rainfall events occur.
Concerning the impacts of human activities on sampling sites, the
NO3–N variable, whose main source is fertilizer, at F3 has a significant
difference with the other sites. The main reason might be that the area
near F3 locates a large tea plantation, where fertilizers are needed to
provide tea trees with nutrition.

Most flow regime variables differ significantly between different
sampling sites (Table 4), except for TEIS m1 and TEIS m4. The SI values
are higher at F3 and F6 but lower at F4 and F5, which implies a sig-
nificant difference between sites. According to the ANOVA results, the
performance of F3 is significantly different from those of F1, F4, and F5,
while the performance of F6 is significantly different from those of F4,
and F5. The main reason that caused lower SI values at F1, F4, and F5
should be the higher elevations of these sites. This result provides an
extra evidence to support the previous studies (Allouche et al., 2012;
Hortal et al., 2013; Lawton et al., 1987) that claims a site located at a
higher-elevation usually contains fewer fish species due to the area
available per habitat decreases (shallow surface water, and narrow
river channels).

The ANOVA results of water quality variables not only reflect the
spatial (geographical) differences but also imply the effects of human
activities on sampling sites. Based on the analytical results, we notice
that (1) good water quality (high DO and low BOD) would commonly

Fig. 3. Framework of the ANFIS.
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lead to higher fish species diversity, (2) the highest SS concentration at
F5 is caused mainly by the frequent landslides in the surrounding area,
and (3) the NO3–N variable at F3 has a significant difference with those
of the other sites because F3 locates a large tea plantation, where fer-
tilizers are needed.

4.2. Input combination selection - results of the GT

Despite a great number of studies on modeling ANNs, there are still
some unresolved issues, such as the identification of input factors that
are more relevant to estimation/prediction. Overtraining is considered
as another severe weakness encountered during ANN model construc-
tion, where excellent results are created by the training data but poor
results are produced by the unseen test data because of the improper
selection of inputs and/or the data length for training. The GT can
adequately overcome these issues and is used in this study to determine
the non-trivial key input items for modeling the ANFIS to achieve re-
liable fish bio-diversity estimation. Initially, 10 water quality variables
and 9 water quantity (flow regime) variables are considered as input
items. However, 19 input variables are too complicated to implement
the ANFIS model, especially based only on 134 datasets. It is necessary
to adopt the GT to identify proper input variables. Thus, there are a
large number of possible combinations of input variables to determine

the key factors for the ANFIS model.
Before conducting the GT, heterogeneous data of water quality and

water quantity were normalized to [-1, 1] in avoidance of the bias
raised from the difference in scales. The GT produced a total of 1023
(210–1) Γ values associated with 10 water quality (i.e., 1023 combi-
nations of variables) and a total of 511 (29–1) Γ values associated with 9
water quantity (511 combinations of variables). In other words, each Γ
value engages a combination of variables. Then, Γ values are sorted in
ascending order, in which the combinations corresponding to Γ values
smaller than the 10th percentile are classified as the best combination
group, whereas the combinations corresponding to  Γ values bigger
than the 90th percentile are classified as the worst combination group.
Finally, the ratio of the occurrence frequency of each variable in the
best combination group to that of the worst combination group is cal-
culated to determine the most suitable input combination for the
ANFIS. Fig. 4 shows the results of the GT, where a blue bar denotes the
occurrence frequency of a variable in the best combination group, a red
bar denotes the occurrence frequency of a variable in the worst com-
bination group, and a black point presents a ratio defined above for a
variable. According to Fig. 4, we chose the elbow (significant turning
point) of the black curve as the threshold to select input variables. It
indicates that BOD, temp, TP, and NO3–N (water quality) as well as
TEIS m2 and TEIS m5 (flow regime) form the optimal input

Table 4
ANOVA results.

Sub-basin Beishi River Neidong River Nanshi River Downstream

Site F1 F3 F4 F5 F6

Variables Elevation (m) 250 180 200 390 100
Temp (°C) Mean 23.3 24.4 22.8 20.8 22.2

S.D.a – (F5)b – (F3) –
pH Mean 7.8 7.8 7.9 7.6 7.36

S.D. – – (F6) – (F4)
EC (μS/cm) Mean 67.8 87.5 80.6 112.2 100

S.D. (F3, F5, F6) (F1, F5) (F5, F6) (F1, F3, F4) (F1, F4)
Turbidity Mean 1.4 4.2 1.7 28.6 22.1

S.D. (F5) – (F5) (F1, F4) –
DO (ppm) Mean 8.1 8.32 8.3 8.3 8.5

S.D. – – – – –
SS (ppm) Mean 0.98 3.4 1.42 33.1 19.5

S.D. (F5) (F5) (F5) (F1, F3, F4) –
BOD (ppm) Mean 0.8 0.9 0.8 0.8 0.8

S.D. – – – – –
NH3–N (ppm) Mean 0.05 0.07 0.06 0.07 0.07

S.D. – – – – –
NO3–N (ppm) Mean 0.28 0.69 0.41 0.32 0.44

S.D. (F3) (F1, F5) – (F3) –
TP (ppm) Mean 0.02 0.03 0.03 0.06 0.07

S.D. (F6) – – – (F1)
TEIS m1 Mean 9.26 15.31 33.03 32.87 32.52

S.D. – – – – –
TEIS m2 Mean 4.78 9.25 16.14 8.95 21.48

S.D. (F6) – – – (F1)
TEIS m3 Mean 11.93 16.61 52.97 35.85 61.22

S.D. (F4, F5, F6) (F4, F6) (F1, F3) (F1) (F1, F3)
TEIS m4 Mean 61.14 117.11 250.69 170.29 276.37

S.D. – – – – –
TEIS m5 Mean 3.32 3.2 19.52 14.8 22.99

S.D. (F4, F5, F6) (F4, F5, F6) (F1, F3) (F1, F3) (F1, F3)
TEIS m6 Mean 40.52 66.16 147.80 105.69 173.4

S.D. (F4, F6) – (F1) – (F1)
TEIS m7 Mean 3.72 3.93 24.63 16.54 26.78

S.D. (F4, F5, F6) (F4, F5, F6) (F1, F3) (F1, F3) (F1, F3)
TEIS m8 Mean 21.54 31.13 81.28 60.02 98.87

S.D. (F4, F6) (F4, F6) (F1, F3) – (F1, F3)
TEIS m9 Mean 5.3 5.51 32.21 21.2 34.98

S.D. (F4, F5, F6) (F4, F5, F6) (F1, F3) (F1, F3) (F1, F3)
Shannon Index Mean 1.51 1.87 1.31 1.31 1.66

S.D. (F3) (F1, F4, F5) (F3, F6) (F3, F6) (F4, F5)

a Significant Difference.
b Each sampling site in a bracket shows a significant difference with the sampling site of the column that it is positioned.
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combination of the ANFIS. Fig. 4 also demonstrates that the GT is a tool
suitable for identifying the relationship between input combinations
and output item.

Concerning water quality, although each of the pairs [BOD, DO] and
[NO3–N, NH3–N] shows similar ANOVA results (no significant differ-
ence in spatial distribution), the GT suggests BOD and NO3–N are more
important factors affecting fish biodiversity, rather than DO and
NH3–N. This expresses that the GT can discover valuable information
that might not be detected by traditional statistical methods. Moreover,
the GT also reduces the noise present during ANN modeling and miti-
gates the problem of overfitting.

4.3. Fish biodiversity estimation – results of the ANFIS

This study estimates fish diversity indexes (Shannon Index, SI) using
the ANFIS based on key input factors determined by the GT. For
building a robust model under the condition of fish data scarcity, we
need to train the model based on the training datasets and test it on
some unseen test datasets. Cross-validation is a resampling procedure
commonly used in machine learning modeling to estimate the skill of a
constructed model on unseen data when only limited data are available
(Varma and Simon, 2006). This popular method is easy to understand
and generally leads to a less biased estimate of the model skill than
other methods, such as a simple split of datasets into training and test
ones. Because we only had limited datasets obtained from eight mon-
itoring sites, we used the cross-validation procedure to train and vali-
date the ANFIS models. We randomly shuffled (re-sample) the complete
datasets (134 datasets) into training (120) and testing sets (14), and the
shuffling procedure was executed 1000 times to achieve the desired
accuracy and reliability.

Four common criteria, i.e., root mean square error (RMSE), mean
absolute error (MAE), coefficient of efficiency (CE), and coefficient of
correlation (CC) are applied to evaluating model performance. Table 5
presents the performance of the estimated SI produced by the ANFIS in
terms of the four evaluation criteria. We note that even the fish biodi-
versity (SI) is significantly different from site to site and results in a
large overall standard deviation (0.46, Table 3), the fish biodiversity
still can be estimated well through the machine learning technique
based on two heterogeneous datasets (flow regime and water quality).
The results reveal that the ANFIS combined with the GT can provide
robust and stable performance of estimation, with the CC reaches about
0.78 and 0.75 in the training and testing stages, respectively, and the
MAE stays only at 0.23 and 0.24 (about half of standard deviation) in
the training stage and testing stage, respectively. Fig. 5 shows the es-
timation results of the ANFIS at F1 (upstream reach, Fig. 5(a)) and F6
(downstream reach, Fig. 5(b)). We can find that the ANFIS model has
good performances in estimating fish biodiversity in both up- and
downstream reaches. The results demonstrate that the ANFIS combined
with the GT can provide accurate estimations of fish diversity, with
high CC (exceeding 0.75) and low RMSE/MAE (half of the standard
deviation) over different spatial and temporal distributions.

4.4. Linkage of environmental and water quality variables with fish
biodiversity – membership functions

Despite the input combination determined by the GT, the principal
structure of the ANFIS model, i.e., if-then rules of fuzzy inference
system, can offer further interpretations between input items and the
output. After verifying the reliability of the ANFIS model in fish bio-
diversity estimation, this study probes into the cognitive construction of
the fuzzy sets of the individual selected input variables by plotting
membership functions (MFs). The membership functions corresponding
to an input variable visualize the auxiliary explanation to address the
impact of this variable on the model target. Fig. 6 shows the MFs of
each selected input variable and the model target (SI). We can find that
the MFs of an input can be classified into different distributions, while
most of these input variables do not show significant differences in the
ANOVA. The results indicate the powerful ability of the ANFIS com-
bined with the GT in feature extraction. For instance, the subtle dif-
ferences between variables cannot be detected by the ANOVA but can
be interpreted by the patterns/distributions of the MFs produced from
the ANFIS. From the results of individual single factor shown in
Fig. 6(a)-6(f), it appears that the patterns of the MFs corresponding to
Temperature, BOD, and NO3–N are similar to those of the model target
(SI), especially for the amplitude of MF1 (wider than those of the other
three MFs). These distributions reflect that the fish species distribution
in the study area highly depends on the water temperature, BOD, and
NO3–N (consistent with the previous study, Chen, 2009 & 2011). Fur-
thermore, the highest MF values of BOD (Fig. 6(b)) and TEIS m2
(Fig. 6(e)) are engaged with Rule 3 (MF3), which would result in the
lowest MF value of fish biodiversity (Fig. 6(g)). In other words, higher
BOD implies the water body might be polluted whereas higher TEIS m2
means lower streamflow in the river (habitat shrinks). Based on Rule 3
(MF3), the lowest fish biodiversity reports that it is difficult for most of
the fish species to survive under such environmental conditions. Be-
sides, Fig. 6 also points out that the highest MF values of TP (Fig. 6(d))
and TEIS m5 (Fig. 6(f)) are contributed by Rule 2 (MF2), which might
lead to higher fish biodiversity (Fig. 6(g)). The implicit reason is that TP

Fig. 4. Determination of ANFIS input items by the GT. (a) Water quality vari-
ables. (b) Flow regime variables.

Table 5
Model performance concerning the estimation of the Shannon Index.

RMSE MAE CC CE

Training 0.30 0.23 0.78 0.60
Testing 0.30 0.24 0.75 0.56
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is the main nutrition source for plankton and some fish species, while
plankton is the main nutrition source for some fish species. Thus, the
conditions of Rule 2 (MF2) here present the advantages of a higher
nutrition source of TP, while higher TEIS m5 means larger habitats
would be more suitable for fish species to survive.

This study demonstrates that the ANFIS has high flexibility to build
a rule base grounded on historical records and can configure a powerful
machine learning framework to deal with heterogeneous datasets. The
visualization of membership functions (MFs) is one of the essences in-
hered in the ANFIS. The results show that the ANFIS can effectively
extract the relationship between environmental variables and fish
communities and offer a better understanding of how environmental
variables affecting fish communities in light of MFs. The MFs not only
can properly reflect the linkages between input variables and the model
target but also can identify the situation of fish biodiversity in a com-
plex environmental background.

5. Conclusions

Machine learning techniques are efficient and scalable tools for data
analysis and pattern recognition and have been widely used in the
environmental field. The practices of machine learning techniques,
however, commonly face awkward situations engaging a large number
of potential inputs but limited datasets when trying to construct reliable
and interpretable models. This study proposed a hybrid approach that

integrates a machine learning model and the Gamma test not only to
extract valuable and meaningful information from the selected en-
vironmental variables but to explore the impacts of these environ-
mental variables on the river fish biodiversity through the underlying
connections of the machine learning framework. Besides, the cross-
validation was carried out to improve the reliability and robustness of
the constructed model on unseen data under the condition of fish data
scarcity. The heterogeneous monitoring datasets of river flow, water
quality, and fish sampling collected over the Xindian River basin in the
northern Taiwan during the period from 2005 to 2012 formed a case
study.

The statistical significance of environmental variables revealed from
the ANOVA indicates the environmental variables (water quality and
flow regime factors) and the ecosystem index (fish bio-diversity) exhibit
inevitable divergence on account of geographical differences as well as
human activities, which could affect the reliability and accuracy of
estimation models.The importance of four water quality factors (BOD,
Temp, TP, and NO3–N) and two flow regime factors (the decreasing rate
of streamflow and 1-day minimum streamflow) to fish biodiversity in
the study area was identified by the GT. A more suitable environment
for the survival of fish species can generally be created under the
condition of lower BOD, higher TP, and larger habitat (flow regimes),
suggested by the ANFIS model.

In summary, the proposed methodology can effectively identify
important environmental variables for modeling fish biodiversity,

Fig. 5. Estimation results of the ANFIS.
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reduces the complexity of the ANFIS structure, and provide reliable and
accurate estimations of fish diversity in the study area. The proposed
machine learning methodology plays a key role in data-mining eco-
hydrological applications and provides more information for decision-
makers to experience the effects of environmental and water quality
variables on the river ecosystems. Future research can keep abreast of
the variations in river ecosystems based on this hybrid framework,
which can provide precise information to decision-makers for planning

the sustainable river ecosystems.
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