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A B S T R A C T   

The Self-Organizing Map (SOM) can supportively organize complex datasets such as highly dimensional flood 
inundation maps. Nevertheless, SOM may produce distinct patterns after being trained with identical samples or 
may not converge in clustering highly dimensional datasets, which causes usability concerns and prevents its 
applications from a broader spectrum. Motivated by such concerns, two training strategies (S1 and S2) were 
proposed to configure SOM based on a large number of highly dimensional flood inundation maps associated 
with two basins located in southern Taiwan. S1 focused mainly on the weights’ adjustments in the ordering stage, 
while S2 would methodically balance the ordering and convergence activities on the weights’ adjustments. The 
effectiveness and suitability of S1 and S2 were inspected in detail by using coverage ratio, flip detector, and five 
clustering indices based on their configured topological maps in the two basins. The clustering results showed 
that the flip detector and the coverage ratio could visibly and objectively examine the suitability of the 
configured topological map. It was noticed that the influences of the ordering and convergence stages upon both 
training strategies for building SOM could significantly affect the coverage ratio as well as flip condition. 
Comparing the SOM topological maps implemented separately with each strategy, S2 strategy has a lower 
probability of causing a flipping situation and takes far fewer iterations to train a model of the same network size, 
which indicates S2 is more efficient and effective than S1 in configuring the SOM topological map for repre
senting regional flood inundation maps.   

1. Introduction 

In the face of increased flooding, disaster prevention is a crucial task 
for urbanized cities. Over the last decades, many flood simulation 
models have been developed to provide storm event-based urban flood 
inundation maps (Afshari et al., 2018; Cook and Merwade, 2009; Darabi 
et al., 2019; Dottori and Todini, 2011; Frank et al., 2012; Neal et al., 
2012; Papaioannou et al., 2016; Rangari et al., 2018; Rong et al., 2020; 
Teng et al., 2017; Yamazaki et al., 2011; Yoo et al., 2013; Zhao et al., 
2019). These models could grasp flood characteristics and provide 
simulated inundation maps of various designed or historical rainfall 
events, which are beneficial to city flood management. Nevertheless, 
despite monitoring data available on-line, they commonly failed to 
provide real-time regional inundation maps due to their heavy compu
tation loads. Real-time regional flood forecasting is crucial for disaster 
prevention but remains a great challenge because of the complex in
teractions and disruptions engaging highly uncertain hydro- 

meteorological variables and the lack of high-resolution hydro- 
geomorphological data. 

Artificial Intelligence (AI) has become one of the popular techniques 
in the studies of water resources management and flood forecasts in the 
last decades (ex., Chang et al., 2020; Nourani et al., 2014; Tikhamarine 
et al., 2020; Wang et al., 2009; Yaseen et al., 2015). Recent studies have 
indicated AI techniques could be a promising tool for flood simulation 
models to conquer the barrier of heavy computation loads and consis
tently provide real-time flood inundation maps based on monitored (or 
forecasted) rainfall during a storm event (ex., Berkhahn et al., 2019; Bui 
et al., 2016a, 2016b; Chang et al., 2014, 2018, 2019; Chapi et al., 2017; 
Falah et al., 2019; Rahmati et al., 2019; Shafizadeh-Moghadam et al., 
2018). The self-organizing map (SOM) is a fascinating AI clustering tool 
for classifying highly dimensional datasets, where input vectors are 
projected onto a low-dimensional grid (map space) in an ordered fashion 
so that more similar vectors will be associated with nodes closer to the 
grid, whereas less similar vectors will be situated in nodes farther away 
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from the grid (Kohonen, 1990). SOM can project input vectors on pro
totypes of a two-dimensional regular grid to form a topological map that 
can be effectively utilized to explore the properties of the data. It has 
been broadly used in a wide variety of fields, ranging from industrial and 
financial domains (ex., Kessentini and Jeffers, 2018; Raptodimos and 
Lazakis, 2018) to water resources domains (ex., Adeloye et al., 2012; 

Chang et al., 2010, 2020; Cheng et al., 2018; Kalteh et al., 2008; Tsai 
et al., 2015, 2017), classification of satellite imagery data and rainfall 
estimation (Farzad and El-Shafie, 2017; Hong et al., 2006; Lin and Wu, 
2007), rainfall-runoff modelling and analysis (Adeloye and Rustum, 
2012; Chang and Tsai, 2016; Nourani and Parhizkar, 2013; Nourani 
et al., 2013; Srinivasulu and Jain, 2006), evapotranspiration (Adeloye 

Fig. 1. The framework of this study.  
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et al., 2011), groundwater (Chang et al., 2016; Chen et al., 2018; Han 
et al., 2016; Haselbeck et al., 2019; Nakagawa et al., 2020; Nguyen et al., 
2015), flood monitoring and management (Chang et al., 2007; Fotova
tikhah et al., 2018; Kussul et al., 2011;), and regional flood inundation 
warning systems (Chang et al., 2014, 2018, 2019). 

Notwithstanding SOM’s wide applications, configuring a suitable 
SOM for highly dimensional datasets, such as a regional flood inunda
tion map, is a formidable challenge. There are three common problems 
of configuring SOM, which are the twisting of the topological map, non- 
convergence, and the determination of the number of neurons (Aoki 
et al., 2009; Breard and Hamel, 2018). Besides, it could produce dis
similar patterns in clustering, even being trained by identical training 
datasets with the same parameters (Zhang et al., 2018). These issues do 
cause usability concerns and prevent its applications from a broader 
spectrum. Motivated by these practical concerns, we systematically 
explore the effectiveness and efficiency of two training strategies for 
configuring SOM as well as assess the suitability of the constructed SOM 
topological map using various evaluation indicators. We construct the 
topological map and analyze the clustering results of spatial–temporal 
distribution of regional flooding in two basins in Tainan City, Taiwan. 
We then present the results and evaluate the quality of the constructed 
topological maps encountered during model construction as well as 
provide further explanation of the proposed strategies assessed by 
evaluation indicators. Conclusions and suggestions are then given, 
which consolidates study results and main findings of this study and 
suggests possible research directions for future works. 

2. Methods 

This study proposes two training strategies to conquer three common 
problems (i.e., the twisting of the topological map, non-convergence, 
and the determination of the number of neurons) commonly encoun
tered when configuring SOM based on a number of regional inundation 
maps for two river basins and explore the efficiency and suitability of the 
constructed SOM topological maps using various evaluation indicators. 
Fig. 1 shows the framework of the study, which contains data collection, 
SOM model construction, topological maps, exploration of results, 
assessment on the effectiveness of training strategies, and identification 
of the best network and training strategy. The methodology proposed to 
build SOM and evaluation indicators are described in the following 
sections. 

2.1. Building SOM 

SOM is commonly configured into a two-dimensional lattice that 
represents a grid-like structure among neurons (nodes) to form a topo
logical map for tackling clustering problems and data exploration. Each 
neuron contains a vector with the same dimensionality of the input 
vector. The neurons are subsequently adjusted during the training phase 
based on competitive learning, where training is entirely data-driven, 
and the neurons of the map compete with each other (Alhoniemi 
et al., 1999). In every iteration, each training sample (input vector) is 
allocated to the neuron to which it best matches, denoted as the best 
match neuron (BMN), where the representative (central) vector of the 
matched neuron is updated so that the BMN moves closer to the input 
vector. Besides, the weights of BMN’s neighboring neurons are 
methodically updated so that the surrounding neurons around the BMN 
are systematically adapted towards the training sample. After 
completing the training process, the final topology would show that the 
neurons on the grid become ordered, where similar neurons stay closer 
to each other. In contrast, less similar neurons remain farther away from 
each other. As a result, training samples are distributed across the 
constructed topological map in a similarity preserving way. 

A fundamental question is whether the topological map can well 
organize and meaningfully interpret the data after training. To the best 
of our knowledge, the clustering results are subject to variability in 

initial conditions, convergence to local minima, and sampling 
complexity (Chang et al., 2014; Mzelikahle et al., 2017). We have 
experienced three significant problems when building the SOM topol
ogy, including the twisting map, the selection of the number of epochs, 
and the optimal network size. We propose a methodology to automati
cally configure SOM for establishing a meaningful topological map for a 
large number of highly dimensional flood inundation maps. 

2.2. Mathematical formulation 

A brief mathematical formulation of SOM, which is based mainly on 
Kohonen (1990), is shown as follows. The input vector X has N di
mensions (Eq. (1)). Each neuron is represented by an N-dimensional 
weight vector (Eq. (2)). The best match neuron (BMN), winning neuron 
selection, is shown in Eq. (3). The topological neighborhood (i.e., the 
neighborhood of a neuron in a topological space) in the kth iteration is 
shown in Eq. (4). The weight adjustment amount Δwj of the jth neuron 
in the adjacent area is shown in Eqs. (4)–(7), where Eq. (6) defines a 
time-varying neighborhood function around a winning neuron. The final 
weight is expressed as Eq. (8). 

X = [x1, x2, x3⋯xN ]
T (1)  

Wj =
[
wj1,wj2wj3…wjN

]T
, j = 1, 2, 3…,M (2)  

q(X) = min
∀j X − Wj2, j = 1, 2, 3…,M (3)  

R(k) = R0exp
(

−
k
τ1

)

k = 0, 1, 2,⋯ (4)  

τ1 =
1000

log(R0)
(5)  

hqj(k) = exp
(

−
‖rj − rq‖

2

2R2(k)

)

k = 0, 1, 2,⋯ (6)  

Δwj = η(k)hq j(k)
(
x(k) − wj(k)

)
k = 0, 1, 2,… (7)  

wj(k+ 1) = wj(k) +Δwjk = 0, 1, 2,⋯ (8)  

where M is the number of neurons, Wj is the weight vector of the jth 
neuron, R(k) represents the topological neighborhood in the k-th iter
ation,R0 is the initial radius preset to cover the size of all neurons so that 
all neurons will fall within the range corrected by the neighborhood 
function,τ1 is a constant value calculated by Eq. (5), hqj(k) denotes the 
amplitude of the topological neighborhood centered with the j-th 
neuron, rj and rq are the position of the j-th node and the q-th winner 
node in the topological map, respectively, and ɳ is the learning rate. 

2.3. Weight adjustment process 

The initial weights of SOM are randomly generated, where the 
relationship between neurons is of extreme disorder; thus, the weight 
adjustment is the crucial process to configure a suitable topological map. 
The weight adjustment process is usually executed in two stages, i.e., 
ordering and convergence, where the ordering stage involves a rough 
training while the convergence stage is responsible for a finer training 
(Kohonen, 1990). In the ordering stage, the weight updating process will 
adjust the neurons of SOM so that the topological ordering of the weight 
vectors takes place. In the convergence stage, the weight updating 
process will adjust those neurons close to the best match neuron for fine- 
tuning the topological map. The number of iterations and the learning 
rates of these two stages would significantly affect the formation of the 
topology. Because the initial weights are in extreme disorder, the 
learning rate and neighborhood radius should be set as large values in 
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the first stage. To make the topological map gradually present the order, 
we have to tune the neurons so that neighboring neurons have similar 
weight vectors. The initial learning rate ɳ0 usually starts at 0.1, and then 
the learning rate, η(k), decreases gradually as the number of iterations 
(k) increases, as shown in Eq. (9). τ2 is set as 1000. 

η(k) = η0exp
(

−
k
τ2

)

k = 0, 1, 2,… (9) 

In the second stage, smaller learning rate and neighborhood radius 
are favorable for fine-tuning the topological map. ɳ0 is changed to 0.01, 
and the range of neighborhood radius is also reduced so that only a few 
neurons staying close to the winner neuron would be fine-tuned. 

We notice that the initial learning rate in the second (convergence) 
stage is much smaller than that of the first (ordering) stage, which is 
because the first stage is a rough training while the second stage is 
responsible for a finer training. After a number of updating (ex. 1000 
epochs), the exponential-decay formulas shown in the neighborhood 
function (Eq. (6)) will reduce to a small value; thus, the weight adjust
ment (Eqs. (7) and (8)) would be effected only a few neighboring neu
rons around the winning neuron. The numbers of epochs for these two 
stages are crucial and must be set at first because such numbers could 
significantly influence the convergence as well as the suitability of the 
constructed topology. 

2.4. Two training strategies 

Two training strategies (S1 & S2) are proposed to investigate their 
effectiveness and suitability of SOM for constructing the flood inunda
tion topologies of two river basins in Tainan City, Taiwan. 

The first strategy, denoted as S1, intends to keep training the SOM 
network until no apparent changes occur in the weights of the neurons 
(i.e., coverage change in the 500th iteration is less than 5%) in the 
ordering stage. The training is transferred to the convergence stage, 
where the training stops if no obvious changes in the weight values can 
be made (i.e., coverage change in the 500th iteration is less than 5%). 

The second strategy, denoted as S2, is to keep training the network 
until the coverage ratio of weights reaches 50% in the ordering stage. 
Then the weight adjustment process is transferred to the convergence 
stage and keeps on until no obvious changes in the weight values can be 
made (i.e., coverage change in the 500th iteration is less than 5%). 

We notice that S1 is implemented mainly in the ordering stage so that 
the weights’ adjustments in this stage will be conducted almost all the 
way to the end (less than 5%). In contrast, S2 would simultaneously 
balance the ordering and convergence activities in the weight updating 
process for roughly configuring the topological map and then fine- 
tuning the topological map. 

2.5. Clustering evaluation indicators 

A variety of quality measures developed over the years attempt to 
quantify how well the underlying data can be represented by a topo
logical map of SOM. SOM can be trained with different map sizes to 
present the deviations of the data, and thus identifying the optimal size 
of SOM is crucial, and the first thing to decide. If the map size is too 
small, it will lose some important features that should be detected. 
Nevertheless, if the map size is too big, the differences between neurons 
(clusters) could be too little. A number of clustering evaluation in
dicators were proposed in the literature, which provided insights into 
the selection of a map size using quantitative indicators. 

For instance, Srinivas et al. (2008) showed different clustering in
dicators for finding the optimal number of clusters in flood frequency 
analyses, and Farsadnia et al. (2014) combined SOM with three clus
tering methods to find the optimal number of clusters through different 
clustering indicators. Tian, et al. (2014) introduced the k-nearest 
neighbor algorithm to improve self-organizing maps for anomaly 

detection using healthy training data from experiments on cooling fan 
bearings. 

Nevertheless, to the best of our knowledge, there is no general 
theoretical principle to determine the optimum map size, and there is no 
standard evaluation indicator created to evaluate the proximity between 
SOM neurons. Thus, the suitability of the formulated SOM topology 
should be explored by using different clustering evaluation indicators. 

Here we compare quality measures by using five indicators to 
investigate the convergence and clustering effect (distinguishable the 
classification) of the SOM model. The principles and physical meanings 
of the five indicators are explained as follows.  

I) The Partition Coefficient (PC) index, proposed by Bezdek (1981), 
shown in Eq. (10) presents the amount of overlap between clusters. 
Its membership degree is determined by the distance between the 
sample and the center of each cluster. The closer the sample to the 
cluster center is, the greater the membership degree is, and vice 
versa. Therefore, the larger the PC value is, the closer the samples are 
to cluster centers, which leads to a more obvious grouping effect. The 
membership degrees of each sample corresponding to different 
clusters is calculated by Eq. (10). μ in Eq. (11) can be set as any value, 
where the general setting is 2. The total membership degree should 
be 1. 

PC =
1
n

∑c

i=1

∑n

j=1
(uij)

2 (10)  

uij =
1

∑c
k=1

(
‖xj − ci‖

‖xj − ck‖

) 2
μ− 1

∑c

i=1
uij = 1 (11)  

where uij is the membership degree, ci is the cluster center, xj is the 
sample, n is the input dimension (the number of grids in the inundation 
map). c is the number of clusters. 

II) The Classification Entropy (CE) is an index of the entropy prin
ciple, which calculated the fuzziness of the cluster partition 
(Farsadnia et al., 2014). When the probability of the event is more 
uniform, the entropy value is more unpredictable and larger. The 
CE value is calculated by Eq. (12). The smaller the entropy is, the 
smaller the CE is. 

CE =
1

− n
[∑c

i=1
∑n

j=1uijloguij

] (12)    

III) The Xie–Beni (XB) indicator, proposed by Xie and Beni (1991), 
shown in Eq. (13) is a function of the data set and the centroids of 
the clusters, where the numerator is the deviation of the sample 
from the cluster center while the denominator is the smallest 
distance between different groups. A smaller value of the XB 
index implies a small intra-group deviation whereas a large dis
tance between groups. 

XB =

∑c
i=1
∑n

j=1(uij)
μ
‖xj− ci‖

2

n min
i ∕= k ‖ci − ck‖

2
(13)    

IV) The Davies-Bouldin index (DBI), proposed by Davies and Bouldin 
(1979), shown in Eq. (14), is a metric built to express the per
formance of clustering tools and to determine the number of 
clusters. The DBI is similar to the XB indicator. The smaller the 
DBI is, the smaller the distance difference between the samples in 
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the group is. The larger the distance between the centers of 
different groups is, the more distinguishable the classification is. 

DBI =
1
c

∑c

i=1
max
i ∕= j

(
Ci + Cj

‖ci − cj‖

)

(14)  

where C is the average distance from all samples of this cluster to the 
center of this cluster.  

V) The Silhouette Coefficient is created as a measure of cluster 
density and separation (Rousseeuw, 1987), which can evaluate a 
particular clustering of a dataset and compare it with other 
clusterings of the same dataset (Layton et al. 2013). The SC can be 
leveraged by measuring the correlation between the authorship 
distance method and the true authorship, evaluating the quality 
of the distance method. However, we show that the SC can be 
severely affected by outliers. The Silhouette Coefficient (SC) is 
shown in Eq. (15). S(i) ranges between − 1 and 1. When the dis
tance between groups is close, there is no much difference be
tween the value of a(i) and b(i). Therefore, the value of S(i) tends 
to 0. When the average distance between the samples in the 
cluster and the cluster center (a) is greater than the center dis
tance between the cluster center and the other clusters (b), S is a 
negative value, which means the classification is less suitable. 
Therefore, the larger the SC value is, the better the classification 
is. 

S(i) =
b(i) − a(i)

max{a(i), b(i) }
SC =

1
n
∑n

i=1
S(i) (15)  

where a(i) is the average distance between the i-th sample and the rest of 

the samples in the same cluster, andb(i) is the minimum value from the 
set of average distance between the i-th sample to all samples in other 
clusters. 

When the distance within the cluster is small, and the distance be
tween the groups is large, the SC value is closer to 1. Thus, the larger the 
SC value is, the better the classification is. 

3. Study areas and materials 

Tainan City in southwestern Taiwan covers an area of about 2200 
square kilometers, and its terrain comprises mainly alluvial plains. The 
city is located in the south of the Tropic of Cancer and belongs to the 
subtropical climate. Rainfall is usually induced by monsoons and ty
phoons, and more than 80% of the annual rainfall concentrates in the 
wet season (June–November). Typhoon-induced torrential rain or 
thunderstorms are prone to flooding. Luermen Creek and the Yenshui 
Creek in Tainan City are our study areas (Fig. 2), and their basic infor
mation is given in Table 1. 

Because there is no real monitoring inundation map, we used 
simulation datasets (maps) as the data sources for training the SOM 
models. The simulation datasets of the “Taiwan Flooding Potential Map” 
were obtained from the Water Resources Planning and Research Insti
tute, Water Resources Agency, Taiwan. The SOBEK (WL/Delft 

Fig. 2. Locations of Luermen Creek and Yenshui Creek in Tainan City of Taiwan. Source of the materials: “Tainan City Inundation Potential Map” from Water 
Resources Planning Institute, Water Resources Agency, Ministry of Economic Affairs. 

Table 1 
River information.  

Basin Area (km2)  Length (km)  Slope 

Luermen 42 (10128 grids)  5.93 1/2000–1/3000 
Yenshui 343.74 (54751 grids)  41.3 1/295  
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Hydraulics, 1995), which had been used to simulate regional flood 
inundation maps in Taiwan (ex. Doong, et al., 2016; Yang et al., 2018), 
was used to simulate the flooding in the study areas to provide flood 
simulation datasets. 

Twenty-seven scenarios were designed by a combination of three 
rainfall duration (6, 12, and 24 h) with nine rainfall amounts (100–800 
mm) under various recurrences (i.e., 2- up to 500-year) of hydrological 
conditions. A total of 27 rainfall events (i.e. 3 durations × 9 rainfall 
amounts) constituted by various durations and rainfall amounts 
(Table 2) were used to simulate the corresponding flood inundation 
maps for both basins. The grid size of the inundation map is 40 × 40 m2. 
We do not consider upland areas that have “never” been inundated (i.e., 
less than 10-mm inundation depth under any condition) so as to reduce 
the area as well as the input dimension for making computation less 
time-consuming. The Luermen Creek has 783 datasets (783 hourly 
inundation maps of 27 simulation scenarios), and each dataset has 
10,128 input dimensions (grid’s depths). The Yenshui Creek has 1539 
datasets (1539 hourly inundation maps of 27 simulation scenarios), and 
each dataset has 54,751 input dimensions. For each basin, its datasets 
will be used as input vectors to configure a topological map as output. 
Thus, the SOM training algorithm is applied to cluster a large number of 
highly dimensional flood inundation maps (input vectors) and configure 
a visible topological map in both basins, individually. 

4. Results and discussion 

This study proposes two strategies (S1 & S2) to configure SOM for 
each study watershed and assesses their effectiveness and convergence 
of the constructed topological maps. Both strategies use the same set of 
initial weights for training; thereby, we explore their effects on topology 
convergence and investigate their flipping situations. The influences of 
the two strategies on building the SOM models are explored in detail 
through coverage ratio, flip detector, and five evaluation indicators of 
the clustering results. The coverage ratio represents the coverage of the 
maximum and minimum weights of neurons as a percentage of the 
training data. For example, if the maximum and minimum weights of 
SOM are 0.8 and 0.2, respectively, the coverage ratio is 60%. These 
measures allow us to assess the adequacy of the configured topological 
map quantitatively. 

4.1. Explore the flip detector for the configured SOM 

Fig. 3 presents a 4 × 4 topology (16 neurons) of the configured SOM, 
based on the 783 hourly inundation maps of the Luermen Creek basin, 
by using the S2 training strategy, where each circle represents one 
neuron, the number in parentheses represents the neuron number, and 
the number without parentheses represents the weight value of the 
neuron. We notice that the weight value of a neuron is the mean inun
dation depth of all the grids in the study area (ex. 10,128 grids in the 
Luermen). As shown, the weight value gradually increases from the 
lower right corner (neuron #16, 0.001 m) to the upper left corner 
(neuron #1, 0.503 m). A green arrow indicates the weight value in
creases in a correct direction, where the neighboring relationship is 
maintained correctly. While a red arrow represents the neighboring 
relationship is incorrect (flip), where the weight value increases in an 
incorrect direction. If that is the case, the topology needs to be retrained 
until the weight distribution is correct. In this study, a “flip” is identified 

if any two neighboring neuron values violate the rule of a correct di
rection, and their difference is significantly large, where a difference 
above 5% indicates a severe flipping while below 5% means an 
acceptable slight inversion. As shown in Fig. 3, the pair of neurons #2 
and #6 violate the rule (red arrow), but the difference between their 
weights is only about 0.8%, indicating this is not a serious flipping sit
uation and the difference in weight is within the acceptable range. Fig. 4 
shows the configured 4 × 4 SOM topological map using the 783 hourly 
inundation maps. As shown, the topological map includes 16 neurons 
and each neuron represents an average inundation map of the inunda
tion depths at 10,128 grids for the basin, where each grid denotes an 
area of 40 × 40 m2. The average inundation map is obtained by 
computing the average of the number of regional inundation maps 
clustered in a neuron. As shown, neuron #1 has the largest regional 
inundation depths, where its average inundation depth is 0.503 m and a 
large portion of the grids have high inundation depth (even high than 2 
m in some grids). In contrast, neuron #16 has the smallest regional 
inundation depths, where the average inundation depth is only 0.001 m 
and inundation does not occur in most of the grids). 

The configured map has a suitable topological relationship where the 
regional inundation depths gradually increase from the lower right 
corner to the upper left corner. 

4.2. Explore the efficiency of two training strategies 

Both training strategies (S1 & S2) are used to construct the 3 × 3, 4 ×
4, and 5 × 5 topological models for the Luermen Creek basin and the 
Yenshui Creek basin. The size and convergence of each constructed 
model are then assessed. The training epoch (iteration) for both training 
strategies is shown in Table 3. It appears it always takes fewer iterations 
to train a model of the same size by S2 than by S1, which clearly in
dicates S2 is more efficient than S1 in training the SOM models. We 
notice that the S1 strategy is based mainly on the ordering phase, which 
uses a large learning rate and neighborhood radius so that it is much 
easier to have a turn-over condition and result in a flipping 
phenomenon. 

Table 4 presents the summarized results of the number of epochs and 
coverage ratio of SOM with three different sizes upon both training 
strategies (S1 & S2) in two phases (P1-ordering phase & P2-convergence 
phase) for both basins. The results indicate that (1) both strategies 
obtain similar final (P2) coverage ratios in the three SOM models for the 
two basins; (2) there is no much improvement (increasing the coverage) 
between P1 and P2 in respect of the S1 strategy, while there is the sig
nificant improvement between P1 and P2 in respect of the S2 strategy; 
(3) the number of epochs is much greater by using the S1 strategy than 
the S2 strategy; and (4) the total training epoch of the S1 strategy is 
much longer (larger) than that of the S2 strategy in all the cases. Thus, 
the S2 strategy is recommended, which trains the network in the 
ordering phase until the coverage ratio of weights reaches 50%, and then 
transfers the training to the convergence phase and continues training 
the weights until no obvious changes in the weight values are made. 

Taking the 3 × 3 SOM model for the Luermen Creek basin as an 
example, Fig. 5 shows the cumulative ratio distribution at various 
numbers of iterations by both strategies (S1 & S2). The color-dots are the 
neurons of the 3 × 3 SOM. The nine vertical color lines are the average 
weight values of nine neurons corresponding to the cumulative rate 
curve (the blue curve), representing the cumulated average inundation 

Table 2 
Simulation scenarios of rainfall events.  

Scenario Duration 1 2 3 4 5 6 7 8 9 

6 h 100 150 200 250 300 350 400 450 500 
12 h 150 200 250 300 350 400 450 500 550 
24 h 200 250 300 350 400 450 500 650 800 

Unit: mm. 
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Fig. 3. Average inundation depth (unit: meter) in 16 neurons (4× 4) of the Luermen Creek basin.  

Fig. 4. The configured 4 × 4 SOM topological map of regional inudation depths in the Luermen Creek basin.  
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depth of the counted datasets and the cumulative ratio of datasets (from 
zero inundation depth to the maximum inundation depth). It can be 
found that the neuron distribution of the two methods increases (ex
pands) with the number of iterations (ex., 500 runs & 5000 runs of S1 
and 500 runs & 3000 runs of S2). The initial weights concentrate in a 
small range (ex. from 0.55 to 0.72 in Fig. 5a) and then expand (ex. from 
0.25 to 0.98 in Fig. 5b) gradually. The neurons with maximum and 
minimum cumulative rates in the training process fall on the two neu
rons farthest from the diagonal (neurons #3 and #7, respectively), 

where no other neurons surpass these two neurons, and their coverage 
ratios are 73% (0.25–0.98) for S1 and 74% (0.24–0.98) for S2. We notice 
that S1 requires 5000 runs (iterations) to train, while S2 only takes 3000 
runs. The results indicate both strategies could provide almost the same 
coverage ratios, and S2 could reach the coverage ratio in a much shorter 
time than S1. Thus, S2 is much more efficient and effective than S1. 

4.3. Examine the suitability of configured SOMs by evaluation indicators 

Next, we explore the suitability of various sizes of SOM for clustering 
large numbers of inundation maps in the two study watersheds and 
assess their convergence. The five clustering evaluation indicators are 
implemented to evaluate the proximity (neighborhood relationship) 
between SOM neurons and investigate the convergence of the con
structed SOM during the training process by both training strategies. As 
shown in Fig. 6, the values of PC, CE, and SC gradually increase (while 
the values of XB and DBI decrease) as the number of iterations increases. 
These results indicate that both training strategies can gradually 

Table 3 
Training time in respect to both training strategies (S1 and S2) for configuring 
the SOM.  

Size of topological map Training time (min) 3 × 3 4 × 4 5 x 5 

Luermen Creek S1 140 200 250  
S2 80 115 130 

Yenshui Creek S1 1400 2000 3100  
S2 930 1600 1800  

Table 4 
Two training strategies (S1 and S2) implemented on the SOM models for the Luermen Creek basin and the Yenshui Creek basin.  

Size of topological map 3 × 3 4 × 4 5 × 5 

Training stage P1a P2b P1 P2 P2 P1 

Luermen S1 Number of epochs 4500 500 3500 500 3000 500  
Coverage ratio 73% 73% 78% 82% 79% 84%  

S2 Number of epochs 2500 500 2000 500 1500 500  
Coverage ratio 53% 74% 56% 79% 52% 83% 

Yenshui S1 Number of epochs 4000 500 2500 500 3000 500  
Coverage ratio 74% 77% 63% 73% 78% 80%  

S2 Number of epochs 2500 500 2000 500 1500 500  
Coverage ratio 55% 77% 53% 81% 52% 82%  

a The ordering stage. 
b The convergence stage. 

Fig. 5. The coverage ratio of nine neurons in the 3x3 SOM model along the iterations by both strategies (S1 & S2) for the Luermen Creek basin.  
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distinguish (separate) the cluster centers during the training process, 
which also means the accuracy (coverage ratio) of classification grad
ually improves (increases). We notice that CE values are too small to be 
meaningful. Therefore, CE is considered unsuitable for identifying the 
classification of flood inundation maps. The value of SC does not change 
significantly along the training process, mainly because the SC indicator 
could not clearly identify whether the differences are within the group 
or between the groups due to SOM’s neighboring relationship. Thus, the 
SC cannot be considered as an effective indicator for clustering the high 
dimensional flood inundation maps. We find the value of XB (as well as 
DBI) is relatively large at the initial iteration number (500 times) due to 
the randomly generated initial weights, where the weights between 
neurons are commonly very small. Therefore, the initial cluster centers 
(neuron weights) are very close to each other, and the classification 

between samples is not clear enough, resulting in considerably large 
values of XB and DBI. After thousands of iterations, the values of XB and 
DBI decrease significantly, which means these indicators are valid. 

Here, we further explore the suitability of various sizes of SOM based 
on coverage ratios. Table 4 presents the coverage ratios corresponding to 
three SOM sizes, where a gradual increase in coverage ratio can be found 
as the map size increases. We notice that the coverage ratio corre
sponding to the 3 × 3 map size is relatively small (less than 77%), and 
thus the 3 × 3 map size is not considered applicable, taking the Yenshui 
Creek basin as an example. Fig. 7 shows the cumulative ratio for both of 
Luermen Creek basin and the Yenshui Creek. It indicates that the 
coverage ratio corresponding to 5 × 5 map is slightly higher than that of 
the 4 × 4 map (82% vs. 81% for Yenshui; and 83% vs. 79% for Luermen). 
Nevertheless, the cumulative ratios of the neurons in 5 × 5 models stay 

Fig. 6. Five clustering evaluation indicators by both strategies (S1 & S2) for the Luermen Creek basin.  

Fig. 7. The standard deviation (STD) and the coverage ratio of 4x4 and 5x5 SOM map sizes along the iterations by S2.  

L.-C. Chang et al.                                                                                                                                                                                                                               



Journal of Hydrology 595 (2021) 125655

10

close together, and its standard deviation (STD) at 2000 iterations is 
small (0.198 for Yenshui; and 0.200 for Luermen), which suggests the 
model might encounter over-fitting. In contrast, the 4 × 4 model has a 
larger STD (0.229 for Yenshui; and 0.218 for Luermen) and more 
dispersed cumulative ratios at 2500 iterations. Thus we consider the 4 ×
4 topography is the best choice for both basins. Fig. 8 presents the 
constructed 4 × 4 topological maps of both basins, where a continuously 
gradual weight change along the diagonal neurons and the nice prox
imity among neighboring neurons could be visibly identified. SOM with 
4 × 4 neurons provided the best mixture of classification presentation 
and track neuron numbers in clusters producing a typology supporting 
our analysis. The benefits of this topological map are the ability to 
meaningfully categorize a large number of observed or simulated 
inundation maps as well as the visibility of the topological map to easily 
and visibly identify the best match inundation map according to the 
estimated and/or monitored hydrological condition. 

5. Conclusions 

SOM has been used extensively as an analytical and visualization tool 
in exploratory data analysis. The constructed topology could be visual
ized to give an insight into the topographic relationships of high- 
dimensional flood inundation maps. Thus, SOM could be a very prom
ising application to regional flood warning systems if it is integrated 
with other machine learning models based on regional rainfall patterns 
such as the way how SOM was applied in the previous studies (Chang 
et al., 2014, 2018). Nevertheless, SOM may produce different patterns 
and/or non-convergence after training, and thus causes usability con
cerns. In this study, we propose two training strategies (S1 and S2) to 
train SOM models using a large number of highly dimensional flood 
inundation maps of two basins located in southern Taiwan and inves
tigate their effectiveness and suitability of the constructed SOM models. 
We notice that S1 focuses mainly on the weights’ adjustments in the 
ordering stage to almost all the way to the end, while S2 would simul
taneously balance the ordering and convergence activities on the 
weights’ adjustments. We examine the coverage ratio and the flipping of 
the topological map when the SOM model is applied to a large number of 
high-dimensional regional flood inundation maps. The main contribu
tions of the proposed training strategies and evaluation indicators of the 
constructed SOM are four-fold and summarized as follows.  

(1) Comparing the two training strategies for constructing SOM 
models for the two study basins, S2 has a lower probability of 
causing a flipping situation and takes much less training time 
(fewer iterations) to build a model of the same size than by S1, 
which clearly indicates S2 is more efficient than S1 in training the 
SOM models.  

(2) The analytical results of the three constructed topological maps 
(i.e., 3 × 3, 4 × 4, and 5 × 5) for both basins indicate that the 
coverage ratio of the 3 × 3 map size is relatively low, whereas the 
5 × 5 map size has some neurons with very similar accumulation 
ratios and result in an over-fitting situation. The 4 × 4 map size 
has a larger variation and well dispersed cumulative coverage 
ratios. Thus we consider the 4 × 4 topography is the best choice 
for both basins.  

(3) The flip detector implemented in this study could visibly present 
and exam the suitability of the configured topological map. The 
computed coverage ratio along the training process could clearly 
indicate the suitability of the SOM map sizes and objectively 
assess the suitability of the topological map for a study area.  

(4) Among the five indicators, PC, XB, and DBI can clearly express 
the training process as effective classification. The CE values are 
too small to compare, and the SC cannot well display the SOM 
map for the highly dimensional regional flood inundation appli
cations. Thus CE and SC would not be recommended as effective 
evaluation indicators for assessing SOM’s classification of 
regional flood maps. In short, PC, XB, and DBI can show the 
training of SOM is effective in categorization. However, CE and 
SC could not show effectiveness. 

SOM is capable of clustering and data mining and is widely used in 
various hydrological processes. Configuring SOM could face issues of 
twisting topological maps and non-convergence, which prevents SOM 
applications from a broader spectrum. This study explores two weight 
adjustment strategies (S1 & S2) in detail, and the results suggest S2 
strategy, which methodically balances the ordering and convergence 
activities on weight adjustment, could more effectively and efficiently 
construct a suitable topological map than the S1 strategy. Thus, S2 
training strategy could be applied to effectively clustering a large 
number of highly dimensional datasets into a meaningful topological 
map for visibly explaining datasets in a wider spectrum. 

(a) Yenshui Creek (b) Luermen Creek 

Fig. 8. The constructed 4x4 topological maps of (a) Yenshui Creek basin and (b) Luermen Creek basin.  
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