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A B S T R A C T   

Reliable long-horizon PM2.5 forecasts are crucial and beneficial for health protection through early warning 
against air pollution. However, the dynamic nature of air quality makes PM2.5 forecasts at long horizons very 
challenging. This study proposed a novel machine learning-based model (MCNN-BP) that fused multiple con
volutional neural networks (MCNN) with a back-propagation neural network (BPNN) for making spatiotemporal 
PM2.5 forecasts for the next 72 h at 74 stations covering the whole Taiwan simultaneously. Model configuration 
involved an ensemble of massive hourly air quality and meteorological monitoring datasets and the existing 
publicly-available PM2.5 simulated (forecasted) datasets from an atmospheric chemical transport (ACT) model. 
The proposed methodology collaboratively constructed two CNNs to mine the observed data (the past) and the 
forecasted data from ACT (the future) separately. The results showed that the MCNN-BP model could signifi
cantly improve the accuracy of spatiotemporal PM2.5 forecasts and substantially reduce the forecast biases of the 
ACT model. We demonstrated that the proposed MCNN-BP model with effective feature extraction and good 
denoising ability could overcome the curse of dimensionality and offer satisfactory regional long-horizon PM2.5 
forecasts. Moreover, the MCNN-BP model has considerably shorter computational time (5 min) and lower 
computational load than the compute-intensive ACT model. The proposed approach hits a milestone in multi-site 
and multi-horizon forecasting, which significantly contributes to early warning against regional air pollution.   

1. Introduction 

In the era of the booming economy, the rising economic activities in 
developing countries have inevitably triggered a notable increase in air 
pollutant emissions. Despite the economic takeoff, people’s quality of 
life has not been improved much because of air pollution (Tagaris et al., 
2009). In some areas suffering from severe air pollution, people can no 
longer carry out human activities at will, which has seriously affected 
their lives. Particulate matters and nitrogen oxide are the dominant 
components of ambient air pollution-induced by industrialization and 
urbanization (Keulers et al., 2022; Trusz et al., 2020). Long-term expo
sure to PM2.5 causes adverse health effects such as respiratory infections 
and lung cancer (Guo et al., 2022; Wang et al., 2021). Air pollution 
induced-health hazards raise an imperative need for PM2.5 forecasts in 
support of early warning for taking air pollution control measures. 

PM2.5 forecasting faces a high degree of uncertainty because of its 

dynamic and complex generation mechanism. In Taiwan, the emission 
of PM2.5 relates mostly to transportation, industrial production, and 
physical and chemical processes (Hsu and Cheng, 2016; EPA, 2016). 
Besides, the emission sources and compounds of PM2.5 are dissimilar in 
different regions. For example, PM2.5 emissions in northern Taiwan 
come mainly from automobiles, while those in southern Taiwan are 
associated mainly with industrial production (Chen et al., 2001; Shen 
et al., 2018). Researchers have been seeking novel methods in diverse 
perspectives to predict PM2.5 concentrations with observational data 
from ground-based monitoring facilities and/or Internet of Things de
vices for moving toward clean and advanced smart cities (Ho et al., 
2020). In general, air quality forecast models can be classified into at
mospheric chemical transport (ACT) models and machine learning 
models (He et al., 2022). The ACT model numerically constructs 
nonlinear ordinary differential equations based on physical and chem
ical mechanisms as well as performs dynamic simulations based on 
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air-contaminated objects and their precursors from the past to the 
future. The Weather Research and Forecasting-Community Multi-Scale 
Air Quality Model (WRF-CMAQ) and the integration of the Weather 
Research and Forecasting model with Chemistry model (WRF-Chem) are 
ACT models (Hong et al., 2020). These models have been the main
stream approaches to modeling PM2.5 since the last decades. Although 
several ACT models have the ability to simulate the future trend of 
PM2.5, there is room for improvement in model accuracy, e.g., R2 = 0.23 
by the WRF-Chem model (Goldberg et al., 2019). Besides, the notorious 
complexity and high uncertainty of PM2.5 concentration makes the 
development of ACT models devoted to PM2.5 forecasting challenging 
(Kim et al., 2019; Lee et al., 2020). 

Machine learning (ML) models are popular predictors for PM2.5 
nowadays and offer a rapid depiction of the interdependence between 
PM2.5 and affecting factors (Shogrkhodaei et al., 2021; Zhou et al., 
2019). Among ML techniques, artificial neural networks (ANNs) and 
deep neural networks (DNNs) have been widely applied to air quality 
prediction (Yan et al., 2020 & 2021; Zhou et al., 2021). A new research 
trend involving the integration of several ML techniques to improve 
prediction reliability and accuracy of PM2.5 concentration has arisen 
lately (e.g., Jain et al., 2021; Lu et al., 2021). For instance, Kow et al. 
(2020) proposed to fuse a convolutional neural network (CNN) with a 
back-propagation neural network (BPNN) for producing regional 
10-h-ahead PM2.5 forecasts. Wang et al. (2017) configured multiple ML 
techniques to capture the high-level features of PM2.5 and provided 
one-day-ahead PM2.5 forecasts. Nevertheless, ML models usually 
encounter a common drawback: they could precisely make short-term 
forecasts but could not reliably predict the occurrence of long-term in
cidents in time because of the weak persistent behavior of the underlying 
data especially on long-horizons. 

High spatio-temporal variability in PM2.5 concentration poses a huge 
challenge in regional long-term PM2.5 forecasting. Facilitating the ad
vantages of both ACT and machine learning models would bear great 
potential to improve PM2.5 forecast accuracy, and therefore would 
benefit the issuance of warnings to prevent public exposure to air 
pollution. This motivates us to explore a novel hybridization approach 
grounding on machine learning techniques driven by ensemble inputs to 
tackle the high nonlinearity of regional PM2.5 forecasts at horizons 
extending from 1 h up to 72 h (3 days ahead). We aim to improve 
forecast accuracy and reliability by effectively learning the spatio- 
temporal features of inputs over the period spanning from the past to 
the future based on an ensemble of two datasets: the monitoring data; 
and the forecasts from the ACT model. The proposed approach (MCNN- 
BP) is configured with two CNNs responsible for extracting important 
information separately from the observed and forecasted datasets as 
well as one BPNN responsible for PM2.5 forecasting. The CNN-LSTM-BP 
model (configured with CNN, long short term memory neural network 
(LSTM), and BPNN) and the ACT model are the benchmarks adopted in 
this study. 74 air quality monitoring stations spreading over the whole 
Taiwan constitute the case study. The Kriging method is used to display 
regional PM2.5 forecasts in a two-dimensional (2D) map. The proposed 
MCNN-BP model makes a big attempt to offer PM2.5 forecasts with 
multiple site/horizon attributes simultaneously. The study area, mate
rials, and methodology are introduced in Sections 2 and 3, respectively. 
Section 4 presents the statistics of input datasets and forecast results. 
Concluding remarks are drawn in Section 5. 

2. Study area and materials 

A total of 74 air quality monitoring stations in Taiwan are used. We 
first partition Taiwan into four regions (R1, R2, R3, and R4 representing 
northern, central, southern, and eastern regions, respectively, Fig. 1) 
based on human activities. The northern region (R1), especially Taipei 
City, is Taiwan’s economic center. Since R1 is the most populated region 
with heavy traffic loads, the government has set up 26 air quality 
monitoring stations in R1. Likewise, there are 23 and 17 monitoring 

stations set up in southern (R3) and central (R2) regions, respectively. It 
is noted that Kaohsiung City in R3 is the second-largest city in Taiwan 
and embraces a heavy industrial area, where AQI often soars above 100. 
The air pollution control policy should be better implemented with strict 
environmental monitoring activities in response to industrial emissions. 
Eastern Taiwan (R4) is the least populous region famous for beautiful 
scenes. The main human activities in R4 are tourism. The concentration 
of each pollutant is obviously the lowest in Taiwan (Table 1). 

There are two types of datasets for use in this study: the observation 
dataset (denoted as the EPA dataset) from the Environmental Protection 
Administration (TW EPA) and the simulated (forecasted) dataset 
(denoted as the AS dataset) from the ACT model (WRF-Chem) of the 
Academia Sinica in Taiwan (TW AS). The EPA dataset is composed of air 
quality and meteorological data extracted from the open data platform 
of the TW EPA (EPA, 2021). The AS dataset provides a huge dataset of 
three-dimensional regional air quality (e.g., PM2.5) for the next 72 h. 
Eight input factors related to PM2.5 formations were collected from the 
TW EPA in the period spanning between January 1, 2019 and June 30, 
2021, including particulate matter (PM2.5 and PM10), O3, nitrogen di
oxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), relative hu
midity, and ambient temperature. It is worth noting that model inputs at 
time step t consist of observations (t-23, …, and t) extracted from the 
EPA dataset and the forecasts (t+1, …, and t+72) extracted from the AS 
dataset. A total of 64,861 hourly datasets (=2.5 years × 365 days x 74 
stations-2664 missing datasets) were collected, where 41,511 datasets 
(64%) and 10,378 datasets (16%) associated with the period of January 
1, 2019 and December 31, 2020 were shuffled and used in model 
training and validation, respectively, while 12,972 datasets (20%, a time 
series from January to June in 2021) were used for testing. 

3. Methodology 

3.1. Motivations 

This study intends to increase the accuracy of 3-day-ahead regional 
PM2.5 forecasts by utilizing advanced ML techniques upon ensemble 
inputs of the antecedent EPA monitoring dataset (representative of the 
past) and 3-day-ahead WRF-Chem forecasts (representative of the 

Fig. 1. Illustration of the study area and four regions (R1-R4) in Taiwan.  
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future). This study explores a hybridization approach (MCNN-BP) 
driven by two deep learning CNNs coupled with BPNN for producing 
reliable and suitable regional long-horizon PM2.5 forecasts. The deep 
learning model (CNN-LSTM-BP) and the WRF-CHEM model constitute 
two benchmarks for comparison purpose. 

Fig. 2 illustrates the proposed deep learning MCNN-BP framework 
for producing multi-station and multi-horizon PM2.5 forecasts. MCNN- 
BP is divided into two phases: feature extraction and forecasting pha
ses. Fig. 2(a) shows that CNN is capable of learning the spatial pattern 
and extracting the temporal feature of each sample. Fig. 2(b) shows that 
BPNN is responsible for learning the nonlinear structure from the 
extracted features of the corresponding time-series data. The model 
flowchart is illustrated in Fig. 2(c). The methods adopted are described 
in the following sections. 

3.2. Convolutional neural network (CNN) 

The CNN has become a popular feed-forward DNN in recent years 
because of breakthroughs in hardware. With the great capability of high- 
level feature extraction, the CNN can effectively distinguish one sample 
from the others through weighting each sample. Besides, its feature 
extraction can be carried out without preprocessing noise removal from 
datasets, which is crucial to improve model performance. The CNN 
structure is mainly formed by convolutional layers (feature extraction 
layers), pooling layers (dimension reduction layers), and fully connected 
layers (flatten layers). However, pooling layers may remove important 
information when tackling the time series problem. As a result, this 
study does not incorporate any pooling layer into CNN. Instead, CNN 
acts as a filter to extract important information while filtering out noise 

from samples (Ghorbani and Behzadan, 2021; Yurtsever and Yurtsever, 
2019). Therefore, the CNN can stack more layers to extract more in
formation and conduct training to prevent overfitting. Because the CNN 
can effectively capture the spatio-temporal dependencies in each sample 
and distinguish dominant features from low-level ones in samples, it has 
been widely used in different fields (Cao et al., 2021; Garajeh et al., 
2021; Pelletier et al., 2019). The implementation of the CNN in this 
study is briefly introduced below. 

In this study, each of the 74 stations has 913 samples (2.5 years * 365 
days), where each sample is composed of 24-h antecedent data of 8 input 
variables (6 air-quality and 2 meteorological variables) extracted from 
the EPA dataset and 72-h-ahead PM2.5 concentration extracted from the 
AS dataset. The EPA dataset and the AS dataset are separately fed into 
two CNN models, where the numbers of CNN filters are set to be 24 and 
36, respectively (Table 2, Fig. 2). This is mainly because the contents and 
dimensions of both datasets are very different. For instance, the EPA 
dataset (representing the past) has 8 variables (PM2.5, PM10, O3, NO2, 
SO2, CO, relative humidity and ambient temperature) with a dimension 
of 192 (=24 time steps (t-23, …, and t) x 8 variables); and the AS dataset 
(representing the future) has 1 variable (PM2.5) with a dimension of 72 
(=72 time steps (t+1, …, and t+72) x 1 variable). 

For each dataset, the filtering process of its associated CNN is con
ducted on each sample, where small matrices (weights) of CNN windows 
are “screening” over each sample. In other words, the filtering process 
carries out the multiplication of each sample with the weights of win
dows (Kim, 2017; O’Shea & Nash, 2015). It is worth mentioning that the 
core of the CNN is "weight sharing," which allows the weights of each 
CNN filter to remain unchanged during feature extraction from each 
sample (Abdel-Hamid et al., 2014). That is to say, the weights for each 

Table 1 
Results of statistical analyses on air quality and meteorological data (January 1, 2019− June 30, 2021).  

Dataset Factor Indicator R1 (North) R2 (Central) R3 (South) R4 (East) Whole Taiwan 

EPA dataset PM2.5 Q3a 18.0 25.0 32.0 12.0 24.0 
(μg/m3) Mean 13.9 18.3 23.0 9.2 17.5  

Standard deviation 9.2 13.3 16.1 5.6 13.3  
Q1b 8.0 8.0 10.0 5.0 8.0 

PM10 Q3 35.0 45.0 60.0 27.0 45.0 
(μg/m3) Mean 27.7 34.6 43.8 21.0 34.0  

Standard deviation 18.4 22.7 26.1 12.4 23.0  
Q1 16.0 19.0 23.0 13.0 18.0 

NO2 Q3 22 15 18.9 8.1 18 
(ppb) Mean 16 11.4 13.6 6.4 13.3  

Standard deviation 10.1 6.7 8.9 4.1 9.1  
Q1 8.2 6.5 6.9 3.5 6.5 

SO2 Q3 3 3 3.7 1.9 3.1 
(ppb) Mean 2.5 2.5 3 1.6 2.6  

Standard deviation 1.5 1.4 2 0.8 1.6  
Q1 1.6 1.7 1.8 1.2 1.6 

O3 Q3 36 31.2 31.9 31 33 
(ppb) Mean 26.7 24.6 24.7 24.1 25.6  

Standard deviation 13.4 11.4 12 11 12.6  
Q1 16.7 16.5 16 15.9 16 

CO Q3 0.7 0.5 0.6 0.4 0.6 
(ppm) Mean 0.5 0.4 0.4 0.3 0.5  

Standard deviation 0.4 0.3 0.3 0.1 0.3  
Q1 0.3 0.2 0.3 0.2 0.3 

Relative Q3 84 83 83 83 84 
Humidity Mean 75.2 75.5 76.5 75.2 75.8 
(%) Standard deviation 12 10.9 9.5 10.6 10.9  

Q1 66 68 70 67 68 
Ambient Q3 28.6 28.4 29.2 28.6 28.8 
temperature Mean 23.4 23.7 25.1 24.1 24 
(◦C) Standard deviation 5.7 5.6 4.9 5.1 5.4  

Q1 18.9 19.3 21.4 20 19.7 
AS dataset PM2.5 (μg/m3) Q3 19.3 24.2 24.2 11.7 23.1 

Mean 15.0 18.2 19.7 8.7 17.4 
Standard deviation 12.6 13.9 16.3 7.4 16.3 
Q1 6.8 8.3 8.3 3.6 6.6  

a Third Quartile. 
b First Quartile. 
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sample remains the same during each filtering process of the CNN, 
which is distinct from the behaviors other ANNs whose layers have 
different weights at different time steps for each sample. 

A filter window determines how many time lags to screen at a time. 
Because this study utilizes one-dimensional CNNs (Fig. 2(a)), the length 
of the filter window is the only parameter to set. The number of con
nections between the input layer and the convolutional layer conforms 

to the length of the filter window, and the number of connections be
tween the convolutional layer and the output layer is 1 (feature map). 

CNN is a supervised neural network and undergoes two phases to 
train the model, i.e. the forward propagation and the backward propa
gation. In this study, the one-dimensional CNN is applied because the 
model requires time features only, implying CNN filters screen each 
sample along one direction (time step). The formulas for the one- 

Fig. 2. The MCNN-BP deep learning approach (fusing the convolutional neural network (CNN) with a regression classifier (BPNN)). (a) Architecture of MCNN. (b) 
Architecture of BPNN. (c) MCNN-BP flowchart. 

Table 2 
Parameter settings for DNN models.  

Model Parameters 

Epochs Filter/Neuron Hidden layer Learning rate Batch size Kernel size Patience (early stopping) Optimizer 

MCNN-BP 50 36 filters/ 2 Conv. a layers/ 0.0001 64 3 15 Adam 
24 filters 2 Conv. layers 
36 neurons 1 FC b layer 
72 neurons 1 FC layer 

CNN-LSTM-BP 50 36 filters/ 2 Conv. layers/ 0.0001 64 3 15 Adam 
24 neurons 2 LSTM c layers 
36 neurons 1 FC layer 
72 neurons 1 FC layer  

a Convolutional. 
b Fully-connected. 
c Long short term memory layer. 
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dimensional CNN are expressed as follows. 
Forward propagation (Indolia et al., 2018): 
If wj connects the input layer and the hidden layer, 

Cℓ
i = σ

(
Xℓ

i

)
with Xℓ

i :=
∑m

j=1
wℓ

j Xℓ− 1
i+j (1)  

else if wj connects two hidden layers, 

Cℓ
i = σ

(
Xℓ

i

)
with Xℓ

i :=
∑m

j=1
wℓ

j Cℓ− 1
i+j (2)  

where σ is the activation function (i.e. ReLU in this study), i = 1, 2,⋯,t, 
Xℓ− 1

i+j = (Xℓ− 1
1+j , Xℓ− 1

2+j , …Xℓ− 1
t+j ) ∈ Rn, Cℓ− 1

i+j = (Cℓ− 1
1+j ,Cℓ− 1

2+j ⋯,Cℓ− 1
t+j ) ∈ Rn , 

Xℓ
i = (Xℓ

1 ,Xℓ
2⋯,Xℓ

t ) ∈ Rn 

Backward propagation (Wagaa & Kallel, 2020; Zhou, 2018): 
The formulas of the backward propagation can be simplied as fol

lows. 

∂Eℓ

∂wℓ
i
=

∑n

j=1
δℓ

i Cℓ− 1
i+j (4)  

where E is the error function, δ is the partial derivative, Cℓ− 1
i+j =

Cℓ− 1
i+j− n if i+ j > n 

The formula of δ is expressed as follows. 

δℓ− 1
i =

∑n

j=1
δℓ

i− jw
ℓ
j (5)  

where δℓ
i− j = δℓ

i− j+n if i − j ≤ 0, i = 1,⋯,n. 

δℓ
i− j = δℓ

i− jσ
′ ( Xℓ

i

)
(6)  

where i = 1,⋯,n. 
Replacing Xℓ

i and Cℓ
j with Xℓ

j and Cℓ− 1
j in Eqs. (4) and (5), 

respectively, 

∂Eℓ+1

∂wi
=

∑n

j=1
δℓ+1

j ⋅σ′
(

Xℓ
j

)
⋅Cℓ− 1

i+j and δℓ
i =

∑n

j=1
δℓ+1

j wℓ+1
i− j σ′

(
Xℓ

j

)
. (7) 

In CNN, the weight and the error term are arrays. The error term is 
expressed as follows. 

δℓ
i = conv

(
δℓ+1

i , rot180
(
wℓ+1

i

))
.σ′

(
Xℓ

j

)
. (8)  

where the conv(.) is the convolution operation, and rot180(.) denotes 
the 180-degree rotation to make the convolution function perform cross- 
correlation (Bouvrie, 2006). 

More details of CNN can be found in Albawi et al. (2017). 

3.3. Long short term memory neural network (LSTM) 

Recurrent neural networks (RNNs) have been widely used in time 
series forecasting. The LSTM is one of the famous RNNs in the deep 
learning field. The LSTM passes the cell state and the hidden state at the 
current horizon to the next horizon to preserve long-term memory and 
short-term memory, respectively (Wang et al., 2021). The LSTM is 
commonly composed of a cell, an input gate, an output gate and a forget 
gate to learn the continuous information of samples during model 
training. More details of the LSTM can be found in Yokoo et al. (2022). 

3.4. Hybrid of multiple CNNs and BPNN (MCNN-BP) 

The proposed MCNN-BP model seamlessly fuses two CNNs with a 
BPNN to make long-term regional air quality forecasts. The configura
tion of MCNN-BP can be divided into two phases: the feature extraction 

phase using CNNs; and the forecasting phase using BPNN. The model 
utilizes two types of input datasets (i.e. EPA and AS datasets) and 
individually handles the two datasets by two CNNs. Each output of the 
CNN contains multiple time attributes. The merits of the model are that 
similarity in patterns among samples is considered to be an auxiliary to 
model training while the noise in the dataset can be removed to improve 
forecast accuracy. CNNs can effectively extract the spatio-temporal 
features from the sample (Fig. 2(a)). The features extracted by the 
CNNs of the first layers are low-level features, and the superposition of 
low-level features form high-level features in the following layers. In the 
forecasting phase, the output of each CNN is flattened and concatenated 
in the flatten layer that is configured with two one-dimensional parallel 
convolutional layers determined by trial and error procedures. Then, the 
BPNN is responsible for making forecasts (Fig. 2(b) and (c)). 72 neurons 
are set up in the output layer to generate 72-h-ahead PM2.5 forecasting. 

To improve long-term forecast accuracy, the proposed model is fed 
with high-dimensional datasets, including the EPA dataset (horizons t- 
24, …, and t) and the AS dataset (horizons t+1, …, and t+72). The 
reason for developing the model to tackle this highly nonlinear problem 
is to avoid gradient vanishing and gradient explosion for aggregating 
information from the past to the future. As a result, the MCNN-BP model 
not only can overcome the bottlenecks encountered by traditional 
neural networks that depend solely on observed datasets but also can 
extend the forecast horizon to t+72 based on the past (the EPA dataset) 
and the future (the AS dataset) information. 

3.5. Hybrid of CNN, LSTM, and BPNN (CNN-LSTM-BP) 

The CNN-LSTM-BP model has three phases, which are the enhanced 
learning phase, the feature extraction phase, and the forecasting phase. 
It differs from the MCNN-BP model by replacing one CNN with an LSTM 
to form the enhanced learning phase for handling the EPA dataset, 
where the LSTM enhances model learning ability by passing current 
information to the next few time steps. The feature extraction phase is 
responsible for capturing important features from the AS dataset. Then, 
both the LSTM output and the flattened CNN output are concatenated to 
feed into the BPNN for simultaneously producing hourly PM2.5 forecasts 
of 74 monitoring stations at multiple horizons. 

3.6. The Weather Research and Forecasting–chemistry (WRF-Chem) 
model 

The WRF-Chem model (version 3.9) that integrates weather (WRF) 
and air quality (Chem) forecast systems is a three-dimension regional air 
quality modeling system (Grell et al., 2005). The WRF module provides a 
comprehensive simulation of the movement of weather systems, repre
senting the physical movement of air mass subject to temperature and 
pressure (Hafeez et al., 2021). The Chem module simulates the emission 
and chemical reaction of air pollutants, representing the fate and budget 
of air pollutants in the atmosphere (Ding et al., 2021). The hybridization 
of WRF and Chem can forecast multiple pollutant concentrations under 
different meteorological scenarios (Casazza et al., 2019). Zong et al. 
(2020) indicated that the simulation of PM2.5 obtained from the 
WRF-Chem model produced good results. The WRF-Chem model has 
been used for the source apportionment and long-term forecasting of 
PM2.5 (Liu et al., 2018; Reátegui-Romero et al., 2018). In this study, the 
emission, transport, and transformation of air pollutants within East 
Asia and Taiwan were simulated with a grid resolution of 9 km and 3 km, 
respectively. The global weather forecast data from the Operational 
Global Forecast System of the National Center for Environmental Pre
diction (NCEP) were deployed to initiate the regional model. The con
centrations of PM2.5, PM10, O3, and other critical air pollutants in 
Taiwan for the next 72 h were forecasted and reported on a daily basis 
during the study period. 
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3.7. Evaluation indicators 

This study adopts the Root Mean Square Error (RMSE), Mean Ab
solute Error (MAE) and the coefficient of determination (R2) to evaluate 
forecast results.Their formulation can be found in Kow et al. (2020) and 
Pal (2016). RMSE represents the error between forecasted values and 
observed data, which magnifies the peak value of forecast error. MAE 
refers to the average magnitude of absolute errors between forecasted 
values and observed data. R2 indicates the correlation between fore
casted values and observed data, and its value ranges from 0 to 1. A 
model with R2 value closer to 1 implied it offers more accurate 
prediction. 

4. Results and discussion 

The constructed MCNN-BP model can deeply learn the observed data 
extracted from the EPA dataset and the PM2.5 forecasts extracted from 
the AS dataset. Another DNN model (i.e., CNN-LSTM-BP) and the WRF- 
Chem model are selected for comparison purpose. The results and 
findings are presented in the order of data preprocessing, model con
struction, and model comparison, and are shown as follows. 

4.1. Data preprocessing 

Since there are various heterogeneous data, data normalization is 
necessary before building the model. Data normalization scales the 
feature data proportionally to adjust each data into a common scale (e. 
g., 0 to 1). Then the normalized samples are randomly allocated into 
training (64%), validation (16%), and test (20%) datasets. 

4.2. Preliminary analysis of each pollutant factor 

Table 1 shows the statistical results of air quality and meteorological 
data used in this study. R1 has the large standard deviation values of 
NO2, SO2, and CO, which indicate the concentrations of these three 
substances have drastic changes. This provides evidence that the main 
emission sources are steam and locomotives in R1. The highest mean 
values of PM2.5 and PM10 concentrations can be observed in R3, which 
was due to industrial emissions. R2 has the second high mean values of 
PM2.5 and PM10 concentrations because Central Taiwan has been 
developed rapidly in recent years. Besides, R2 and R3 have relatively 
large standard deviations of PM2.5 concentrations. R1 has a relatively 
low mean and standard deviation of PM2.5 but the highest mean and 
standard deviation of O3. R4 has the least industrial and commercial 
activities, and therefore its mean and standard deviation of PM2.5, PM10, 
and O3 concentrations is the lowest. 

According to Liu et al. (2009), meteorological factors are also 
important factors affecting PM2.5 concentration. The deposition process 
of PM2.5 has a high correlation with relative humidity because moisture 
attaches to fine particles and accumulates to bigger sizes. The relative 
humidity of the whole Taiwan is very high, with an annual mean value 
exceeding 70%, implying relative humidity is a crucial factor affecting 
PM2.5 (Cao et al., 2021; Zalakeviciute et al., 2018). The temperature is 
also an important factor affecting PM2.5 (Chen et al., 2021). The com
parison of the mean values of PM2.5 associated with EPA and AS datasets 
reflects that there exists bias of PM2.5 in R1 and R3 since the mean value 
in the AS dataset is significantly higher in R1 but lower in R3. Besides, 
the standard deviations of the AS dataset are higher than those of the 
EPA dataset in all regions (R1-R4). In addition, the errors of the AS 
dataset can be observed, which also reflects there exist bias in the AS 
dataset. 

One of the characteristics of ANN is fault-tolerant. That is, a few 
extreme values do not significantly affect model training (Duddu et al., 
2020). In this study, we define extreme values to be either smaller than 
mean-3*standard deviation or larger than mean + 3*standard deviation 
(Jawlik, 2016). The proportions of outliers in the entire dataset are 

1.3%, 0.16%, 2.3%, 0.5%, 1.4%, 0.2%, 1.2% and 1.1% for SO2, ambient 
temperature, CO, O3, PM2.5, relative humidity, PM10 and NO2, respec
tively, which are small. In this study, we delete most of the outliers while 
reserving some noise to test the denoise ability of the proposed model. 

4.3. Parameter setting 

Table 2 presents the parameter settings for the two DNN models. The 
most suitable values of parameters are determined by validation errors 
after executing a large number of trial and error procedures. The kernel 
size of each CNN filter is set to be 3, leading to the filter length and width 
being 3. The filter and the neuron number are set to be the time step of 
each sample divided by an integer (e.g., 1,2,3,..) to avoid overfitting. 
Furthermore, patience (early stopping) is set to be 15, indicating the 
training process will terminate earlier if there is no further reduction in 
the error after 15 consecutive iterations. The Adam optimizer that has 
the ability of both Adagrad (an optimizer that adjusts the learning rate 
by the gradient) and momentum is selected. 

Moreover, in order to avoid gradient vanishing problems caused by 
the complex structure of the hybrid DNN model, the numbers of hidden 
layers in the convolution layer and the fully-connected layer, filters and 
neurons are set to be small values (a shallow architecture) in this study 
(Hochreiter, 1998; Kolbusz et al., 2017). 

4.4. Comparison between DNN models and the WRF-Chem model for 
PM2.5 forecasting 

4.4.1. Performance of DNN forecasts 
We first show the reasons why the ensemble of inputs is important for 

the deep learning model. To fully investigate the forecast effect on 
consecutive forecast horizons, an air pollution incident at the QianZhen 
air quality monitoring station in R1 (Fig. 1) was selected because of its 
high variation in PM2.5 concentrations. Fig. 3 gives the PM2.5 forecast 
results obtained from WRF-Chem and MCNN-BP models at consecutive 
horizons from 2021/01/27 to 2021/01/31. 

Fig. 3(a) gives consecutive 72-h (3-day) PM2.5 forecasts starting from 
2021/01/27 8am. The MCNN-BP model performs satisfactorily espe
cially when PM2.5 concentration exceeds 35 μg/m3. This result indicates 
that the MCNN-BP model not only deeply mines the EPA dataset that 
strengthens the short-term forecast effect but also learns the future PM2.5 
trend from the AS dataset that produces good long-term forecast 
performance. 

Fig. 3(b) gives consecutive 72-h PM2.5 forecasts starting from 2021/ 
01/28 8am. In this air pollution incident, the MCNN-BP and the WRF- 
Chem models behave quite differently. The MCNN-BP model performs 
satisfactorily even though there is a great variation of PM2.5 concen
tration (>45 μg/m3) in this incident. The result indicates that the 
MCNN-BP model has a robust short-term forecasting ability for sudden 
incidents. For instance, when the concentration of an air quality factor in 
the EPA dataset suddenly increases, there will be a high probability for 
the MCNN-BP model to make a forecast of high PM2.5 concentrations. 
Besides, the MCNN-BP model also inherits the long-term forecasting 
ability from the WRF-Chem model. Therefore, the MCNN-BP model can 
mimic the long-term PM2.5 trend through the air pollution diffusion 
mechanism. The reason why the MCNN-BP model can better foresee 
sudden incidents in both short-term and long-term forecasting is 
attributed to its ability that learns in-depth features from observed (the 
past) and forecasted (the future) datasets. The forecasts of the WRF- 
Chem model evidently played an important role in improving the ac
curacy of the proposed MCNN-BP model. 

Fig. 3(c) gives 72 h PM2.5 forecasts starting from 2021/01/29 8am. 
In this case, both the MCNN-BP and the WRF-Chem models successfully 
forecasted the occurrence of a pollution incident in the future. The re
sults of the MCNN-BP model fluctuate less because it can deeply exca
vate historical data to correct the forecast results of the AS dataset and 
make its forecasts more reasonable. 
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In brief, the three PM2.5 incidents shown in Fig. 3 imply that an 
ensemble of inputs representative of the past and the future has high 
potential to improve the performance of the MCNN-BP model. Although 
the CNN-BP model occasionally underestimates PM2.5, it still can suit
ably forecast PM2.5 trends by learning PM2.5 features in the past, which 
improves the outcome of the WRF-Chem model. The forecast accuracy 
made by the MCNN-BP is satisfactory because of its capability to remove 
noises from datasets and to extract useful information from two input 
datasets (EPA and AS datasets). 

4.4.2. Performance of different DNN models for PM2.5 with ensemble inputs 
We further investigate the two DNN models for PM2.5 forecasting. 

The hourly performance of both DNN models and the benchmark model 
(WRF-Chem) at t+24, t+48, and t+72 are shown in Table 3. The results 
show that MCNN-BP outperforms CNN-LSTM-BP in training, validation 
and testing phases. It is worth mentioning that the MAE and RMSE 
values of both models are relatively larger in the testing phase than in 
the training and validation phases. This is because some data in the test 
dataset are comparatively higher than those in training and validation 
datasets. 

It is noted from Table 3 that the uncertainty of the AS dataset is 
noticeable and increases with the time horizon because the linearity 
between the WRF-Chem forecasts (the AS dataset) and observations (the 
EPA dataset) declines as the time horizon increases in term of R2 (0.36, 

Fig. 3. PM2.5 forecast results of WRF-Chem and MCNN-BP at consecutive horizons (72-h) starting from 2021/01/27 to 2021/01/29 at the QianZhen station, with 
initial forecast times at: (a) 2021/01/27 08:00:00; (b) 2021/01/28 08:00:00; and (c) 2021/01/29 08:00:00. 
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0.31 and 0.31 for horizons T+24, T+48, and T+72, respectively, 
Table 3). If we use one CNN to handle both datasets, the AS dataset with 
larger uncertainty will be assigned smaller weights due to the low R2 

values between the AS dataset and the EPA dataset, compared to the EPA 
dataset. As a result, the importance of the AS dataset to the MCNN-BP 
model will be significantly reduced. In other words, two separate CNN 
models (i.e. one multivariate CNN model and one univariate CNN 
model) are implemented for deeply extracting features from the his
torical observation of the EPA dataset and learning the future PM2.5 
trend and corresponding uncertainty from the AS dataset separately. 

We further calculate the daily performance of PM2.5 forecasts by 
averaging the hourly forecasts over 24 h, as shown in Table 4. The re
sults show that MCNN-BP outperforms CNN-LSTM-BP in all three pha
ses. It is worth mentioning that forecast performance summarized on a 
daily basis is superior to hourly forecast performance in the terms of 
higher R2, lower RMSE and lower MAE values. This result proves that 
the DNN model can be suitable and reliable to make 3-day-ahead PM2.5 
forecasts. 

The MCNN-BP model is a static model, which means it neither stores 
nor passes the previous state to the next time step. Therefore, model 
performance would decrease in the testing phase when the data struc
ture of the testing phase is inconsistent with those of the training and 
validation phases. As for model efficiency, the MCNN-BP model has a 
shorter (28.6% less) computational time than the CNN-LSTM-BP model. 
According to forecast performance, especially in training and validating 
phases, as well as computational time, the MCNN-BP model is superior 
to the CNN-LSTM-BP model. The main reason for the MCNN-BP model to 
make such achievement is its superior ability of the convolution layer for 
feature extraction and noise removal from EPA and AS datasets. In 
contrast, the CNN-LSTM-BP model has a weak denoise ability, despite its 
ability to transmit the information to the next few time steps to enhance 
model forecasting. 

It is also crucial to further validate the capability and reliability of 
the proposed model. The comparative results demonstrate that the 
MCNN-BP model could significantly improve PM2.5 forecasts and pro
duce much higher accuracy than the WRF-Chem model. The reason is 
that the model effectively extracts the observed data (the past) and the 
forecasted data from WRF-Chem (the future), which can improve model 
ability through learning the future trend (the next 72 h’ PM2.5 forecasts). 
In other words, the MCNN-BP model is capable of deeply extracting the 
time feature from high-dimensional datasets, removing the noise from 
the multiple convolution layers, and converting the feature into useful 
information in the stacked fully connected layer. 

It is noted that the WRF-Chem model operated on a server consumed 
about 8 h to produce PM2.5 forecasts and the MCNN-BP model operated 
on a desktop computer consumed only about 5 min to produce PM2.5 
forecasts. Therefore, the overall computation time of the operational 
forecasting model integrating WRF-Chem and MCNN-BP will exceed 8 h 
because the MCNN-BP model requires the output of the WRF-Chem 
model to carry out PM2.5 forecasting. 

4.5. Regional multi-step-ahead PM2.5 forecasting 

To evaluate the forecasts performances from different perspectives, 
we chose two severe pollution incidents for further investigation. Fig. 4 
gives the regional multi-step-ahead PM2.5 forecasts (t+24 and t+72) 
obtained from the MCNN-BP model over the whole Taiwan at 8am on 
January 27, 2021 and February 04, 2021. As shown, the proposed 
model, in general, could provide suitable and reliable long-term fore
casts, where the MAE values for the whole Taiwan are fairly small (less 
than 5 μg/m3 mostly). Fig. 4(a) gives 3-day-ahead PM2.5 forecasts 
starting from 2021/01/27 8am. The immense MAE value occurs in the 
southern region (R3) at t+24 because the DNN model obviously over
estimated PM2.5. At t+72, although PM2.5 is overestimated in R2, the 

Table 3 
Hourly performance (R2, RMSE and MAE) of the DNN models for PM2.5 in the training, validation, and testing phases and WRF-Chem in the testing phase at t+24, t+48 
and t+72.  

Indicator Horizon Training Validation Testing 

CNN-LSTM-BP MCNN-BP a CNN-LSTM-BP MCNN-BP CNN-LSTM-BP MCNN-BP WRF-Chemb 

R2 t+24 0.60 0.63 (5.00) 0.55 0.56 (1.82) 0.54 0.55 (1.85) 0.36  
t+48 0.57 0.6 (5.77) 0.50 0.52 (4.55) 0.49 0.5 (2.04) 0.31  
t+72 0.52 0.55 (5.77) 0.44 0.46 (1.00) 0.47 0.47 (0.00) 0.31 

RMSE t+24 7.75 7.48 (3.48) 8.00 7.92 (1.00) 11.62 11.37 (2.15) 14.43 
(μg/m3) t+48 8.20 7.79 (5.00) 8.61 8.35 (3.02) 12.49 12.03 (3.68) 14.77  

t+72 8.59 8.36 (2.68) 9.15 9.07 (0.87) 12.43 12.34 (0.72) 14.65 
MAE t+24 3.62 3.09 (14.64) 3.76 3.3 (12.23) 4.88 3.92 (19.67) 9.19 
(μg/m3) t+48 5.46 5.27 (3.48) 5.72 5.66 (1.05) 7.46 7.36 (1.34) 9.36  

t+72 5.68 5.48 (3.52) 6.13 6.02 (1.79) 7.99 7.85 (1.75) 9.61  

a Value in parenthesis denotes the improvement of MCNN-BP over CNN-LSTM-BP (%). 
b Atmospheric Chemical Transport (ACT) model. 

Table 4 
Daily (average over 24 h) performance (R2, RMSE and MAE) of the DNN forecasting models for PM2.5 in the training, validation, and testing phases at horizons T+1, 
T+2 and T+3.  

Indicator Horizon (days) Training Validation Testing 

CNN-LSTM-BP MCNN-BP CNN-LSTM-BP MCNN-BP CNN-LSTM-BP MCNN-BP WRF-Chem 

R2 T+1 0.79 0.82 (3.80) 0.75 0.77 (2.67) 0.70 0.72 (2.86) 0.44  
T+2 0.72 0.74 (2.78) 0.66 0.67 (1.52) 0.61 0.62 (1.64) 0.41  
T+3 0.68 0.71 (4.41) 0.59 0.62 (5.08) 0.58 0.58 (0.00) 0.40 

RMSE T+1 4.59 4.30 (6.32) 4.85 4.67 (3.71) 7.12 6.75 (5.20) 10.03 
(μg/m3) T+2 5.31 5.06 (4.71) 5.73 5.60 (2.27) 8.26 8.05 (2.54) 10.23  

T+3 5.73 5.46 (4.71) 6.44 6.26 (2.80) 8.53 8.50 (0.35) 10.20 
MAE t+24 3.18 2.99 (5.97) 3.42 3.31 (3.22) 4.59 4.46 (2.83) 7.02 
(μg/m3) t+48 3.70 3.52 (4.86) 4.04 3.95 (2.23) 5.47 5.38 (1.65) 7.19  

t+72 4.02 3.78 (5.97) 4.50 4.32 (4.00) 5.74 5.74 (0.00) 7.22 

a Value in parenthesis denotes the improvement of MCNN-BP over CNN-LSTM-BP (%). 
b Atmospheric Chemical Transport (ACT) model. 
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model still well forecasted the pollution incident occurring in R2 and R3 
(red and yellow, respectively). The MAE values at t+24 and t+72 are 
considered very low because there was a serious pollution event in 
Taichung County (R2) and Kaohsiung County (R3). The main emission 
sources causing severe air pollution in Taichung and Kaohsiung are 
thermal power plants and heavy industrial plants, respectively (She 
et al., 2020; Wu et al., 2021). Furthermore, R2 and R3 are located on the 
leeward sides of mountain ranges, which is not conducive to atmo
spheric diffusion (EPA, 2022). 

Fig. 4(b) gives 3-day-ahead PM2.5 forecasts starting from 2021/02/ 
04 8am. We notice that the proposed model overestimated PM2.5 and 
produced a large MAE value in the southern region (R3) at t+24. There 

are also immense MAE values occurs in the northern region (R1), central 
region (R2) and southern region (R3) at t+72. In contrast, the proposed 
model underestimated PM2.5 at t+72, especially in the western coast of 
Taiwan. This is mainly because transboundary pollution brought by the 
northeast monsoon makes the model underestimate PM2.5 (EPA, 2022; 
Li et al., 2021). The results further demonstrate that the proposed hybrid 
deep neural network hits a milestone in suitably predicting PM2.5 
behavior and holistically addressing the interactive mechanism between 
air quality and meteorological factors. 

Fig. 4. PM2.5 forecast results obtained from the MCNN-BP model at t+24 and t+72 for the whole Taiwan at (a) 2021/01/27 8am and (b) 2021/02/04 8am.  
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5. Conclusion 

The forecast of fine particulate matter concentration becomes a 
complex spatio-temporal problem due to a great variety of emission 
sources. Therefore, long-term multi-step-ahead air pollution forecasting 
is highly challenging. This study proposed a deep learning approach 
(MCNN-BP) to extract high-dimensional features from ensemble inputs 
and make multi-step-ahead (1- to 72-h) PM2.5 forecasts at 74 sites 
concurrently. The input sources consisted of the dataset (EPA dataset) 
collected at air quality monitoring stations and the forecasts (AS dataset) 
given by the WRF-Chem model. The main contributions of the proposed 
MCNN-BP approach based on ensemble inputs are fourfold. 

Firstly, the model can tackle the curse of dimensionality to produce 
reliable and suitable regional long-horizon forecasts PM2.5. It has the 
merits to extract similarity in patterns among high dimensional samples 
to facilitate model training while removing the noise from datasets to 
improve forecast accuracy. Secondly, the model can foresee the occur
rence of air pollution incidents through learning future information 
from the AS dataset and antecedent information from the EPA dataset. 
Thirdly, the model makes a breakthrough in extending the forecast 
horizon from a few hours to several days (3 days in our case). Fourthly, 
the comparative results demonstrated the MCNN-BP model with shorter 
computation time outperformed the CNN-LSTM-BP model and the WRF- 
Chem model. 

In light of methodological transferability, future research can inte
grate the MCNN-BP with other methodologies such as the self- 
organizing map (SOM), a powerful clustering tool (Chang et al., 
2020&, 2021). SOM can be implemented to reduce data’s dimension
ality and then increase the learning efficiency of subsequent MCNN-BP 
for improving model accuracy. Furthermore, real-time high temporal 
resolution satellite imagery can improve interpretability and predictive 
accuracy of air quality (Yan et al., 2021) and therefore can be a good 
auxiliary input to the MCNN-BP model for regional long-term PM2.5 
forecasting. 
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