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A B S T R A C T

Reliable and precise multi-step-ahead flood forecasts are crucial and beneficial to decision makers for mitigating
flooding risks. For a river basin undergoing fast urban development, its regional meteorological condition in-
teracts frequently with intensive human activities and climate change, which gives rise to the non-stationary
process between rainfall and runoff whose non-stationary features is difficult to be captured by a non-recurrent
data-driven model with a static learning mechanism. This study proposes a recurrent Adaptive-Network-based
Fuzzy Inference System (R-ANFIS) embedded with Genetic Algorithm and Least Square Estimator (GL) that
optimize model parameters for making multi-step-ahead forecasts. The main merit of the proposed method (R-
ANFIS(GL)) lies in capturing the features of the non-stationary process between rainfall and runoff series as well
as in alleviating time-lag effects encountered in multi-step-ahead flood forecasting. To demonstrate model re-
liability and effectiveness, the R-ANFIS(GL) model was implemented to make multi-step-ahead forecasts from
horizons t+ 1 up to t+ 8 for a famous benchmark chaotic time series and a flood inflow series of the Three
Gorges Reservoir (TGR) in China. For comparison purpose, two ANFIS neural networks of different structures
(one dynamic and one static neural networks) were also implemented. Numerical and experimental results
indicated that the R-ANFIS(GL) model not only outperformed the two comparative networks but significantly
enhanced the accuracy of multi-step-ahead forecasts for both chaotic time series and the reservoir inflow case
during flood seasons, where effective mitigation of time-lag bottlenecks was achieved. We demonstrated that the
R-ANFIS(GL) model could suitably configure the complex non-stationary rainfall-runoff process and effectively
integrate the monitored rainfall and discharge data with the latest outputs of the model so that the time shift
problem could be alleviated and model reliability as well as forecast accuracy for future horizons could be
significantly improved.

1. Introduction

A reliable and accurate long-term flood forecast model yields
minimal error, and it facilitates decision-making on the optimal re-
servoir operation for achieving minimal flood risks and/or maximal
operational synergies as well as allowing sufficient time to prepare for
hazard management. This is particularly important for real-time re-
servoir operation during flood periods. Nevertheless, rainfall and runoff
variables are both spatially and temporally fickle while notoriously
interrelated such that rendering the watershed system is a highly
complex, dynamic and non-stationary process, which is very challen-
ging. Moreover, it is much difficult to predict the multi-step, rather than
single-step, chaotic nature in real-world time series due to the high
uncertainty in inputs and the interactions between different prediction

horizons. Multi-step-ahead forecasting has been carried out mostly with
recursive strategies (Taieb and Atiya, 2016). The model input selection
(e.g., data pre-processing using data-mining techniques), model para-
meter optimization and model output post-processing (e.g., ensemble
forecasts, real time correction) are the main foci and important com-
ponents in multi-step-ahead hydrological forecasts. In this study, we
pay special attention to model parameter optimization. It is a valuable
strategy to use recurrent mechanisms that adopt model outputs as ex-
ternal (extra) information for making real-time multi-step-ahead fore-
casts, whereas local search algorithms may bring instability and local
minima bottlenecks that would easily give rise to error accumulation
and propagation (Abrahart et al. 2012; Banihabib et al. 2015; Chang
et al., 2014; Nanda et al. 2016; Tran et al. 2016; Zhang et al. 2018a). In
addition, such time-lag problems may cause significant performance
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deterioration when coping with multi-step-ahead forecasts in real-
world applications. When making multi-step-ahead streamflow fore-
casts during flood seasons, models with time-lag problems (e.g. model
overfitting/instability or real-time observed rainfall/runoff values un-
available) would fail to trace flow trails closely, especially peak flows,
as forecast horizon increases. Regarding multi-step-ahead forecasting, it
has been argued for a long time on whether global search algorithms
that optimize model parameters for recurrent mechanisms, like anterior
observations and/or predicted values, could overcome the technical
drawbacks like time-lag phenomena of local search algorithms. Con-
sequently, an efficient algorithm is required for determining the op-
timal network parameter setting to improve the stability and reliability
of forecast models.

Artificial neural networks (ANNs) and fuzzy inference systems (FIS)
are crucial branches of Artificial Intelligence (AI) techniques, and they
have been successfully utilized to model various hydrological time
series in the last two decades (e.g., Chen et al. 2013; He et al., 2014;
Nourani et al. 2014; Fazel et al., 2015; Chang and Tsai 2016; Alexander
and Thampi, 2018; Fotovatikhah et al., 2018; Tan et al., 2018). The
main characteristic of an ANN is to adapt itself automatically to the
simulated environment through a large amount of input–output pat-
terns (Kumar et al. 2015; Kasiviswanathan et al. 2016; Shoaib et al.
2016; Taormina et al., 2015; Wang et al., 2013; Zhang et al. 2018b).
This adaptation allows taking account of the specific features of each
investigative event to keep model forecast capability at the average in
the long run. The imprecision and uncertainty of model inputs could be
handled by the FIS, while the input–output patterns could be identified
by ANNs with adaptive learning capabilities (Yaseen et al., 2015,
2017). The Adaptive-Network-based Fuzzy Inference System (ANFIS)
proposed by Jang (1993) integrates adaptive learning capability with
fuzzy reasoning and is capable of coping with complexity as well as
noise problems, such as streamflow forecasts (Chang and Chang, 2006;
Firat and Güngör, 2008; He et al., 2014; Tsai et al., 2014). However,
rainfall-runoff is a time-dependent dynamic process with input-output
patterns difficult to identify entirely using the static ANFIS. Lately, a
considerable amount of studies has migrated to explore recurrent fuzzy
neural networks for analyzing time series and temporal processes
(Kasabov and Song 2002; Nguyen et al., 2018). The recurrent ANFIS (R-
ANFIS) with a dynamic mechanism has feedback connections in its
topology, where current external variables and delayed outputs con-
stitute the inputs of the recurrent model (Zhang and Morris 1999). Such
recurrent mechanism possesses prominent capability that the mapping
between inputs and outputs remains dynamic, rather than stationary,
over time and long-short term memories can be incorporated into the
ANFIS when making multi-step-ahead time series forecasts (e.g.,
Mastorocostas and Theocharis 2002; Fei and Lu 2018; Xiong and Zhang
2018). Such characteristic and ability of the R-ANFIS, however, does
not receive much attention from environmental and hydrological fields.

Recurrent networks are usually trained by the Gradient Descent
Algorithm (GDA). The local search algorithm proposed by Jang (1993)
for the ANFIS is a combination of the Least Square Estimator (LSE) and
the Steepest Descent Algorithm (SDA) such that linear and nonlinear
parameters are locally adjusted to minimize the errors between outputs
and targets. Both the SDA and the GDA perform derivative operation,
which usually encounters instability as well as local minima problems
during modelling (Tamura et al. 2008). Evolutionary algorithms are
promising tools to accomplish the parametric learning of ANNs. The
main feature of these algorithms reveals that the locations of the ex-
trema of a function defined over the search space depend on a popu-
lation of positions, instead of a single position, in the search space
(Chandra, 2015; Liu et al. 2016). In comparison with other evolutionary
algorithms, such as the Particle Swarm Optimization (PSO) and the
Differential Evolution (DE) algorithms, the Genetic Algorithm (GA)
proposed by Holland, 1975 has the ability to mimic processes observed
in natural evolution and is prevalently utilized to solve various opti-
mization problems in hydrology and water resources fields (e.g., Cheng

et al., 2005; Chang et al., 2010; Chen and Chang, 2009; Zhou and Guo,
2013; Li et al. 2014; Naghibi, et al., 2017; Yin et al., 2017; Zhou, et al.
2017; Ehteram, et al., 2018).

The innovative nature of this study lies in the application of the R-
ANFIS(GL) for the first time in multi-step-ahead flood forecasting, and
we propose to adapt fuzzy learning equipped with evolutionary para-
meter optimization by means of predictive recurrence from antecedent
prediction for future prediction horizons. We expect to effectively mi-
tigate time-lag effects caused by the local search algorithm and sig-
nificantly increase prediction accuracy. To demonstrate the reliability
and applicability of the proposed approach in multi-step-ahead flood
forecasts, we utilize the Mackey-Glass time series as a benchmark and
the inflow series of the Three Gorges Reservoir in China as a real ap-
plication case. Needless to say, the famous Mackey-Glass and the Lorenz
time series are two of the most referred benchmark nonlinear chaotic
time series. The former is adopted as the benchmark in this study, in-
asmuch as the former generated by a nonlinear time-delay system is
more suitable for conducting the comparative analysis with similar
dynamic time series, for instance, rainfall-runoff time series with time-
delay responses. The remainder of the study is organized as follows.
Section 2 presents the framework of the proposed model, the recurrent
mechanism and the evolutionary algorithm. Section 3 shows detailed
model evaluation on the benchmark time series. Section 4 presents the
results and discussion on the proposed model applied to flood inflow
forecasting. Conclusions are then drawn in Section 5.

2. Multi-step-ahead flood forecast methodology

2.1. Framework

The main goal of this study aims at exploring an evolutionary al-
gorithm (GL) that hybrids the GA and the LSE to configure the recurrent
ANFIS model into future forecast horizons for alleviating time-lag
phenomena caused by the local search algorithm as well as improving
forecast accuracy through derivative-free exploration with weight ad-
justment in training stages. Both the traditional ANFIS, denoted as
ANFIS(SL), and the traditional recurrent ANFIS, denoted as R-ANFIS
(SL), that combines the SDA and the LSE for model configuration are
the comparative models in this study. Fig. 1 presents the architecture of
the proposed R-ANFIS(GL) model, where the recurrent mechanism of
the R-ANFIS illustrated in Fig. 1(a) is responsible for predicting future
outcomes while the proposed evolutionary algorithm (GL) illustrated in
Fig. 1(b) is responsible for searching the optimal parameters of the R-
ANFIS. The construction of the recurrent mechanism and the evolu-
tionary algorithm of the proposed R-ANFIS(GL) for modelling multi-
step-ahead flood forecasts together with its overall effectiveness are
presented as follows.

2.2. Recurrent mechanism

The recurrent mechanism in the R-ANFIS intends to forecast future
outputs by using the inter feedback (forecasted value) of the model
when the external feedback (observed value) is not available. The
patterns between input and output variables of the ANFIS and the R-
ANFIS are illustrated in Fig. 1(a) and described as follows.

For the ANFIS,

+ + = − ⋯ −t F t t t k tHorizon t 1: Y( 1) (Y( ), Y( 1), ,Y( ), XX( )) (1a)

= − ⋯ −t t t tXX( ) {X( ), X( 1), ,X( d)} (1b)

+ + = − ⋯ −t F t t t k tHorizon t 2: Y( 2) (Y( ), Y( 1), ,Y( ), XX( )) (2)

+ + = − ⋯ −t F t t t k tHorizon t 3: Y( 3) (Y( ), Y( 1), ,Y( ), XX( )) (3)
…

+ + = − ⋯ −t n F t t t k tHorizon t n: Y( ) (Y( ), Y( 1), ,Y( ), XX( )) (4)
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For the R-ANFIS,

+ + = − ⋯ −t F t t t k tHorizon t 1: Y( 1) (Y( ), Y( 1), ,Y( ), XX( )) (5)

+ + = + ⋯ + −t F t t t k tHorizon t 2: Y( 2) (Y( 1), Y( ), ,Y( 1 ), XX( )) 

(6)

Fig. 1. R-ANFIS(GL) architecture. (a) R-ANFIS for multi-step-ahead forecasting. (b) Optimization of R-ANFIS parameters using the proposed evolutionary algorithm
that fuses the Genetic Algorithm (GA) with the Least Square Estimator (LSE).
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), ( ))

  

(7)
…

+ + = + − ⋯ + + −

−

t n F t n t t n

k t

Horizon t n: Y( ) (Y( 1), ,Y( 2), Y( 1

), XX( ))

   

(8)

where F(⋅) is the function of the pattern between input and output
variables. + + ⋯ +t t t nY( 1), Y( 2), ,Y( )   denote the forecasted values
at horizons + + ⋯ +t t t n1, 2, , , respectively. X

− ⋯ −t t t( ), X( 1), ,X( d) denote the d+1 antecedent observed values
in external input variables. tXX( ) is the set of antecedent observed va-
lues in external input variables. − ⋯ −t t tY( ), Y( 1), ,Y( k) denote the
k+ 1 antecedent observed values in autoregressive input variables.

2.3. Evolutionary algorithm

The evolutionary algorithm (GL) proposed in this study for the R-
ANFIS aims at optimizing the non-linear (premise) parameters in Layer
1 by using the GA and the linear (consequent) parameters in Layer 4 by
using the LSE. The computation steps are illustrated in Fig. 1(b) and
introduced as follows.

(1) Initialize population with real coding:

Randomly generate an initial population (Pop) for the non-linear
parameters in Layer 1 (fuzzification). Each node in Layer 1 implements
fuzzification by setting the membership degree of each input variable.
Mathematically, the output of each node here can be expressed by Eqs.
(9) and (10).

= =μ iO (x ), for 1, 2, ori1, A 1i (9)

= =μ iO (x ), for 1, 2i1, B 2i (10)

where x1 and x2 are the input variables. O i1, is the output of the ith
node. μ (·)Ai and μ (·)Bi are the membership functions for fuzzy rules Ai

and Bi, respectively.
The fuzzy set associated with each input node is characterized by

the shape of its membership function. Membership functions can be any
continuous and piecewise differentiable functions such as the Gaussian
function as well as the generalized bell shaped, the triangular shaped
and the trapezoidal shaped functions. Owing to smoothness and concise
notation, the Gaussian and the generalized bell-shaped membership
functions are increasingly popular for specifying fuzzy sets (Chang and
Chang, 2006). A number of researches demonstrated that these two
membership functions were more suitable for climatic and hydrological
forecasting (Keskin et al. 2006; Zounemat-Kermani and Teshnehlab
2008; Wang et al. 2009; Talebizadeh and Moridnejad 2011; Goyal et al.
2014). It is noted that the Gaussian membership function is superior to
the generalized bell shaped one in this study in terms of forecast ac-
curacy by means of intensive trial-and-error procedures. In con-
sequence, the membership function of the ANFIS employees the Gaus-
sian function in this study, as expressed in Eq. (11).

⎜ ⎟= ⎛
⎝

− ⎞
⎠

μ c
σ

(x ) exp (x )
2A 1

2

2i (11)

where σ{ , c} is the set of nonlinear parameters in Layer 1. When there
are N1 input variables and N2 membership functions in Layer 1, the
number of non-linear parameters becomes N3 (=2×N1×N2) and the
number of fuzzy rules becomes =N ( (N ) )4 2

N1 .

(2) Propagate forward from Layer 1 to Layer 4:

Each node in Layer 2 (if-then rule operation) carries out fuzzy-AND
operation with T-norm operators (Jang 1993). The output of Layer 2
can be expressed by Eq. (12).

= = × =μ μ iO w (x ) (x ), for 1, 2i i2, A 1 B 2i i (12)

where O i2, (or wi) is the output of the ith node in Layer 2.
The output of the ith node in Layer 3 (normalization) is the ratio of

the output of the ith node in Layer 2 to the sum of all outputs in Layer 2,
shown as follows.

= =
+

−
O w w

w wi i
i

3,
1 2 (13)

where O i3, (or
−

wi) is the output of the ith node in Layer 3.
Each node in Layer 4 performs defuzzification with a linear func-

tion.

= = + +
− −

w f wO (p x q x r)i i i i i i i4, 1 2 (14)

where O i4, is the output of the ith node in Layer 4. {p , q , r }i i i is the set of
linear parameters of Layer 4. When there are N5 output variables, the
number of linear parameters becomes N6 (=N2×(N1+N5)) in this
layer.

(3) Optimize the set of linear parameters in Layer 4 using the LSE:

Given the values of non-linear parameters in Layer 1, Eq. (14) can
be transformed into a matrix equation:

= PO Z4 (15)

where O4 is the output vector of Layer 4. P is the output vector, and Z is
the matrix of linear parameters of Layer 3. The LSE of Z, ∗Z , seeks to
minimize the squared error ∥ − ∥P Z O4

2 that forms the grounds for
linear regression. The formula for ∗Z uses the pseudo-inverse of Z.

=∗ −Z P P P( ) OT 1 T
4 (16)

where PT is the transpose of P , and −P P P( )T 1 T is the pseudo-inverse of P.
∗Z is the set of the optimal linear parameters in Layer 4, where the

optimization of parameters is carried out by the LSE.

(4) Propagate forward to Layer 5 and evaluate population to save the
best individual:

Given the optimal linear parameters, population is evaluated by
calculating the error function described in Eq. (17).

∑ ∑= = −
= =

i i if(s) 1
2

[e( )] 1
2

(Y ( ) Y ( ))
i i

N

1

N
2

1
f o

2

(17)

where f p( ) is the error function corresponding to the population of
non-linear parameters; ei is the residual error corresponding to the ith
data; N is the total number of observed data; and iY ( )f and iY ( )o are the
forecasts and observations of the ith data, respectively;

(5) Implement the genetic operation routine:

The process involves: (a) a tentative new population is duplicated
from parent chromosomes through the reproduction operation. A
higher fitness (i.e. the elitism preservation strategy) is preferentially
chosen for survival by the tournament selection operation (Goldberg
1989; Goldberg and Deb 1991); (b) two parent chromosomes are re-
combined into new offspring chromosomes utilizing the crossover
procedure with probability (Pc); and (c) a mutation operation with
probability (Pm) can be performed for maintaining genetic diversity in
the next generation. As compared with the deterministic sampling for
individual selection, the tournament selection operation has the main
merits that it is a stochastic sampling for individual selection and its
elitism preservation mechanism can overcome the premature con-
vergence bottleneck by preferentially choosing an individual with a
higher fitness value. As a result, the tournament selection operation is
implemented in this study for producing a new offspring population to
boost the convergence of parameter optimization for the hydrological
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model.

(6) Terminate the computation process subject to the stopping criteria:

Evaluate the population according to Steps 2–4. If the number of
generation is less than the maximal generation (Gmax), then perform
Steps 2–6 again. Otherwise, terminate the computation process and
deliver the optimal results.

3. Model evaluation by benchmark time series

To test and verify the performance of the proposed R-ANFIS(GL) on
multi-step-ahead forecasts, the traditional ANFIS(SL) and the R-ANFIS
(SL) are selected as benchmarks on the grounds that: (1) they have the
same model structure (i.e., the ANFIS); (2) they have the same model
parameters (the SDA and the LSE) to optimize; (3) the comparison
between the ANFIS(SL) and the R-ANFIS(SL) is conducted at first to
demonstrate the contribution of the recurrent mechanism to multi-step-
ahead forecasting while the comparison between the R-ANFIS(SL) and
the R-ANFIS(GA) is then implemented for demonstrating the con-
tribution of the evolutionary algorithm (the GA) to multi-step-ahead
flood forecasting. We intend to show that both the recurrent mechanism
and the evolutionary algorithm play a pivotal role in ameliorating
multi-step-ahead flood forecasting.

Besides, the famous Mackey-Glass time series utilized frequently to
analyze the generalizability of different data-driven models or algo-
rithms is selected as the benchmark time series in this study (Jang 1993;
Ardalani-Farsa and Zolfaghari, 2010; Chang et al., 2012).

The Mackey-Glass series is expressed as follows.

= −
+ −

− ×dx t
dt

x t τ
x t τ

t( ) 0.2 ( )
1 ( )

0.1 ( )10 (18)

where the initial conditions are set asx (0) =1.2, andτ =17.
In this study, a time series of x with variable length equal to 1000 is

created by Eq. (18). During model construction, the leading 500 sam-
ples are utilized in the training stage, and the remaining 500 samples
are divided equally into validation and testing stages, respectively. The
numbers of variables for the embedding dimension (D) and time delay
(T) in the Mackey-Glass time series are set as 4 and 6, respectively. We
introduce a model input selection strategy in this study. When model
training completes, three potential ANFIS networks with different
structures are identified. Then the trained ANFIS network that produces
the best performance in the validation stage is selected as the final
model to be further tested by the testing dataset for evaluating model
reliability. This model selection strategy is applied to the ANFIS(SL),
the R-ANFIS(SL) and the R-ANFIS(GL), respectively.

The parameters of each ANFIS model in this study are summarized:
(a) 4 (=N1) input variables; (b) 2 (=N2) membership functions; (c) 16
(N3= 2×N1×N2) non-linear parameters in Layer 1; (d) 16
( =N (N )4 2

N1) fuzzy rules; (e) 1 (=N5) output variable under the single-
output pattern; and (f) 10 (N6=N2×(N1+N5)) linear parameters in
Layer 4. In the SDA, the parameters of learning rate (η), decreasing
factor (α), increasing factor (β) and maximum generation (Gmax) are set
as 0.01, 0.9, 1.1 and 1000, respectively. In the GA, the parameters of
population (Pop), crossover probability (Pc), mutation probability (Pm)
and maximum generation (Gmax) are set as 1000, 0.9, 0.1 and 1000,
respectively. It is manifest that the values of parameters required in the
optimization algorithms could be obtained by means of intensive trial-
and-error procedures for producing higher forecast accuracy.

Considering the stochastic nature of hydrological variables, one
must not rely solely on any single indicator when evaluating the per-
formance of hydrological forecast models. Additionally, for flood fore-
casting, it is very essential to know the performance of flow forecast
models when forecasting high-magnitude data (e.g., reservoir inflows).
Consequently, indicators utilized to evaluate model accuracy and
forecast ability of flood peaks in this study consist of the Nash-Sutcliffe

Efficiency coefficient (NSE, Nash 1970), the Root Mean Square Error
(RMSE), the Goodness-of-Fit with respect to the benchmark (Gbench) and
the Peak Percent Threshold Statistics (PPTS, Lohani et al., 2014). The
formulae of the four indicators are expressed as follows.

= −
∑ −

∑ −
≤=

=

−
i i

i
NSE 1

(Y ( ) Y ( ))

(Y ( ) Y )
, NSE 1i

i

1
N

f o
2

1
N

o o
2 (19)

∑= − ≥
=

i iRMSE 1
N

(Y ( ) Y ( )) , RMSE 0
i 1

N

f o
2

(20)

= −
∑ −

∑ −
≤=

=

i i

i i
G 1

(Y ( ) Y ( ))

(Y ( ) Y ( ))
, G 1i

i
bench

1
N

f o
2

1
N

o bench
2 bench

(21)

∑ ⎜ ⎟=
− +

⎛
⎝

− ⎞
⎠

≥
=k k

i i
i

PPTS 1
( 1)

Y ( ) Y ( )
Y ( )

, PPTS 0l u
l u i

( , )
1

N
f o

o (22a)

= ×k l N
100l (22b)

= ×k u N
100u (22c)

where N is the number of the observed data,
−
Yo is the average of the

observed data. iY ( )bench is the observed data shifted backwards by one
or more time lags, for instance, iY ( )bench = −i nY ( )0 denotes the nth-
step-ahead forecasted value. l and u are lower and higher limits in
percentage, respectively.

It is clear from the definitions of these indicators that a model is
considered to perform better if it has higher NSE and Gbench values
while lower RMSE and PPTS values than the other comparative model
(s).

Considering the time delay in the Mackey-Glass time series is 6
antecedent time steps (=T), the eight-step-ahead forecast (horizons
t+ 1 up to t+ 8, time step=1 h) is investigated for demonstrating the
performance of the evolutionary R-ANFIS model (i.e. R-ANFIS(GL)). For
the Mackey-Glass time series, the forecast results at different horizons
are summarized in Table 1 and the residual errors of each model in
validation and testing stages are illustrated in Fig. 2. The results of
multi-step-ahead forecasts clearly show that:

1) The ANFIS(SL) performs the worst according to its comparatively
larger RMSE & PPTS values but smaller Gbench & NSE values at
different forecast horizons (Table 1). Besides, the band of its residual
errors is the widest (Fig. 2). This is because the ANFIS(SL) does not
utilize any recurrent mechanism and/or evolutionary algorithm
(e.g., GL) such that the forecast error taking place in the initial
timing of each recursion will cumulate and propagate to future re-
cursions, which results in poor forecast accuracy.

2) The R-ANFIS(SL) and the R-ANFIS(GL) perform better than the non-
recurrent ANFIS(SL) in all the validation and testing cases (Table 1,
Fig. 2). It reveals that the recurrent mechanism of the ANFIS can
adequately identify the dynamic and non-stationary properties of
time series and therefore improves forecast accuracy.

3) Both the R-ANFIS(SL) and the R-ANFIS(GL) perform well (in terms
of model stability and forecast accuracy) in training stages (Table 1).
Nevertheless, the R-ANFIS(SL) performs less well than the R-ANFIS
(GL) in the validation and testing stages due to the instability caused
by its inherent derivative operation.

4) The R-ANFIS(GL) performs preeminently in all the cases according
to RMSE, PPTS, Gbench and NSE values (Table 1) and the residual
errors (Fig. 2). The results show that the proposed evolutionary
recurrent model (R-ANFIS(GL)) in consideration of the nearest
anterior feedback can efficiently modify synaptic weights, and
therefore reliable and accurate multi-step-ahead forecasts can be
achieved.
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5) The results indicate that the RMSE and the PPTS gradually increase
(the Gbench and the NSE gradually decrease) as the forecast horizon
increases (i.e. from t+1 to t+ 8), and the largest increments of the
RMSE and the PPTS along the forecast horizon for the three models
are produced by the ANFIS(SL) while the smallest ones are produced
by the R-ANFIS(GL).

To show the merit (recurrent mechanism and evolutionary ap-
proach) of the proposed R-ANFIS(GL) by taking the horizon of t+ 8 for
example, the results of the three ANFIS models in training stages are
assessed (Fig. 3). It indicates that the error function values of the R-
ANFIS(SL) and the R-ANFIS(GL) are smaller than those of the ANFIS
(SL), where sharp drops occur around the 50th generation for the two

Table 1
Model performance of multi-step-ahead forecasts with respect to the Mackey-Glass time-series.

Period Model Indicator Horizon

t+ 1 t+ 2 t+3 t+4 t+ 5 t+ 6 t+ 7 t+ 8

Training ANFIS(SL) PPTS(2%) 0.0312 0.0335 0.0374 0.0415 0.0447 0.0530 0.0589 0.0625
PPTS(5%) 0.0328 0.0352 0.0393 0.0436 0.0469 0.0557 0.0618 0.0656
PPTS(10%) 0.0343 0.0369 0.0411 0.0457 0.0492 0.0583 0.0648 0.0688
PPTS(20%) 0.0374 0.0402 0.0449 0.0498 0.0536 0.0636 0.0707 0.0750
RMSE 0.0021 0.0046 0.0073 0.0120 0.0208 0.0316 0.0431 0.0527
NSE 0.998 0.988 0.944 0.896 0.839 0.732 0.645 0.552
Gbench 0.998 0.982 0.862 0.811 0.727 0.605 0.477 0.429

R-ANFIS(SL) PPTS(2%) 0.0312 0.0325 0.0363 0.0403 0.0434 0.0515 0.0572 0.0607
PPTS(5%) 0.0328 0.0342 0.0381 0.0423 0.0456 0.0540 0.0600 0.0637
PPTS(10%) 0.0343 0.0368 0.0411 0.0456 0.0491 0.0582 0.0647 0.0686
PPTS(20%) 0.0374 0.0401 0.0448 0.0497 0.0535 0.0635 0.0705 0.0749
RMSE 0.0021 0.0042 0.0047 0.0062 0.0186 0.0214 0.0307 0.0392
NSE 0.998 0.996 0.953 0.926 0.910 0.882 0.860 0.802
Gbench 0.998 0.995 0.931 0.912 0.894 0.855 0.824 0.750

R-ANFIS(GL) PPTS(2%) 0.0294 0.032 0.034 0.036 0.037 0.043 0.047 0.049
PPTS(5%) 0.0315 0.034 0.036 0.040 0.041 0.047 0.052 0.055
PPTS(10%) 0.0342 0.0367 0.0410 0.0455 0.0490 0.0581 0.0646 0.0685
PPTS(20%) 0.0373 0.0401 0.0447 0.0497 0.0535 0.0634 0.0705 0.0748
RMSE 0.0018 0.0039 0.0042 0.0050 0.0122 0.0189 0.0255 0.0317
NSE 0.998 0.997 0.991 0.982 0.961 0.941 0.923 0.907
Gbench 0.998 0.997 0.988 0.962 0.944 0.931 0.917 0.901

Validation ANFIS(SL) PPTS(2%) 0.0314 0.0338 0.0377 0.0418 0.0451 0.0534 0.0594 0.0630
PPTS(5%) 0.0330 0.0355 0.0396 0.0439 0.0473 0.0561 0.0623 0.0662
PPTS(10%) 0.0346 0.0371 0.0415 0.0460 0.0496 0.0588 0.0653 0.0693
PPTS(20%) 0.0377 0.0405 0.0452 0.0502 0.0541 0.0641 0.0712 0.0756
RMSE 0.0021 0.0046 0.0073 0.0120 0.0210 0.0319 0.0435 0.0530
NSE 0.998 0.986 0.941 0.893 0.831 0.729 0.640 0.547
Gbench 0.998 0.982 0.862 0.811 0.725 0.595 0.472 0.425

R-ANFIS(SL) PPTS(2%) 0.0314 0.0328 0.0366 0.0406 0.0437 0.0518 0.0576 0.0611
PPTS(5%) 0.0330 0.0344 0.0384 0.0426 0.0459 0.0544 0.0605 0.0642
PPTS(10%) 0.0346 0.0370 0.0413 0.0459 0.0494 0.0586 0.0651 0.0691
PPTS(20%) 0.0377 0.0404 0.0451 0.0500 0.0539 0.0639 0.0710 0.0754
RMSE 0.0021 0.0042 0.0047 0.0062 0.0191 0.0217 0.0311 0.0397
NSE 0.998 0.996 0.948 0.924 0.893 0.861 0.835 0.808
Gbench 0.998 0.995 0.931 0.912 0.889 0.852 0.813 0.746

R-ANFIS(GL) PPTS(2%) 0.0296 0.0318 0.0342 0.0363 0.0374 0.0433 0.0474 0.0495
PPTS(5%) 0.0317 0.0340 0.0365 0.0398 0.0410 0.0474 0.0518 0.0550
PPTS(10%) 0.0344 0.0369 0.0412 0.0457 0.0493 0.0584 0.0649 0.0689
PPTS(20%) 0.0375 0.0403 0.0450 0.0499 0.0537 0.0637 0.0708 0.0751
RMSE 0.0018 0.0039 0.0042 0.0050 0.0125 0.0192 0.0258 0.0322
NSE 0.998 0.997 0.991 0.974 0.950 0.937 0.922 0.907
Gbench 0.998 0.997 0.988 0.962 0.943 0.926 0.912 0.893

Testing ANFIS(SL) PPTS(2%) 0.0315 0.0338 0.0378 0.0419 0.0451 0.0535 0.0595 0.0631
PPTS(5%) 0.0331 0.0355 0.0397 0.0440 0.0474 0.0562 0.0625 0.0663
PPTS(10%) 0.0347 0.0372 0.0416 0.0461 0.0497 0.0589 0.0654 0.0694
PPTS(20%) 0.0378 0.0406 0.0453 0.0503 0.0542 0.0642 0.0714 0.0758
RMSE 0.0025 0.0051 0.0075 0.0127 0.0213 0.0322 0.0448 0.0547
NSE 0.996 0.981 0.936 0.871 0.825 0.716 0.632 0.540
Gbench 0.996 0.979 0.860 0.806 0.722 0.591 0.467 0.411

R-ANFIS(SL) PPTS(2%) 0.0315 0.0329 0.0367 0.0407 0.0439 0.0520 0.0578 0.0613
PPTS(5%) 0.0331 0.0345 0.0385 0.0428 0.0461 0.0546 0.0607 0.0644
PPTS(10%) 0.0347 0.0372 0.0415 0.0461 0.0496 0.0588 0.0654 0.0694
PPTS(20%) 0.0378 0.0406 0.0453 0.0502 0.0541 0.0642 0.0713 0.0757
RMSE 0.0025 0.0045 0.0048 0.0065 0.0195 0.0220 0.0317 0.0408
NSE 0.996 0.995 0.939 0.920 0.886 0.853 0.828 0.801
Gbench 0.996 0.992 0.928 0.906 0.884 0.845 0.811 0.741

R-ANFIS(GL) PPTS(2%) 0.0297 0.0319 0.0343 0.0364 0.0376 0.0435 0.0476 0.0497
PPTS(5%) 0.0318 0.0342 0.0367 0.0400 0.0412 0.0476 0.0521 0.0552
PPTS(10%) 0.0339 0.0363 0.0404 0.0448 0.0482 0.0571 0.0634 0.0672
PPTS(20%) 0.0373 0.0400 0.0446 0.0489 0.0527 0.0623 0.0692 0.0734
RMSE 0.0021 0.0042 0.0045 0.0055 0.0127 0.0199 0.0261 0.0324
NSE 0.997 0.995 0.991 0.970 0.950 0.932 0.918 0.902
Gbench 0.997 0.994 0.985 0.959 0.942 0.929 0.907 0.890
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recurrent models. This is because the recurrent mechanism utilizes
anterior observations and/or forecasted values to reduce error accu-
mulation and propagation. It is noted that the error function values of
the R-ANFIS(SL) and the R-ANFIS(GL) show less fluctuation than those

of the ANFIS(SL). The error function of the R-ANFIS(GL) even produces
a smoother curve with a monotonic decreasing trend, which implies the
ANFIS(GL) is able to avoid falling into the trap of local minima. In
addition, the initial error function value in the R-ANFIS(GL) is

Fig. 2. (a) Mackey-Glass time-series. (b)-(d) Residual errors of the ANFIS(SL), R-ANFIS(SL) and R-ANFIS(GL) in validation and testing stages at horizon t+ 8,
respectively.
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significantly smaller than those of the other two models. This is re-
sulting from the evolutionary approach that the elitism preservation
strategy of the GL algorithm could evaluate and select the optimal so-
lution (ANFIS parameters) from 1000 solutions (=Pop) in every gen-
eration. The SL algorithm, on the contrary, could only move forward
one by one solution in every generation. These results clearly show that
the proposed evolutionary algorithm (i.e., GL) can conquer the short-
comings of model instability and local minima caused by the local
search algorithm (i.e. SL).

We would like to note that the main differences between the local
search algorithm and the proposed evolutionary algorithm are: (1) the
local search algorithm combines the SDA with the LSE (Jang 1993;
Zhang and Morris 1999) while the proposed evolutionary algorithm
combines the GA with the LSE; (2) the local search algorithm is a de-
rivative and deterministic optimization algorithm (Tamura et al. 2008)
while the proposed evolutionary algorithm is a derivative-free and
stochastic optimization algorithm; and (3) the local search algorithm is
a non-evolutionary algorithm confined by the initialization of the non-
linear parameters of the ANFIS while the proposed evolutionary algo-
rithm is an AI-based global search algorithm.

4. Application

We next evaluate the applicability and reliability of the proposed
ANFIS(GL) model with a reservoir inflow series. A brief introduction of
the study area, illustrated in Fig. 4, is made as follows. The Chang-Jiang
River extending 6300 km is the longest river in China, and its drainage
area covers 1.80 million km2. The Chang-Jiang River is located in the
subtropical zone between the Indian Ocean and the North Pacific
Ocean. Floods in this basin usually result from heavy rainfalls such that
downstream flooding may occur just within one day. Therefore, re-
servoir operation targeting river-basin flood control and water resource
management demands for accurate multi-step-ahead flood forecasts
that can adequately deal with the high variability of river flow. In the
Chang-Jiang River Basin, the Xiang-Jia-Ba (XJB) Reservoir in the up-
stream and the Three Gorges Reservoir (TGR) constitute a top-down
cascade. These two reservoirs are pivotal hydraulic facilities in this
basin and serve multiple purposes of flood control, hydropower gen-
eration, navigation, etc. The XJB and the TGR (the largest reservoir in
the world to date) have drainage areas of 0.46 and 1.00 million km2

accordingly, and their flood control capacities are of 0.90 and 22.15
billion m3, respectively. Because of pervasive human activities across
the earth and global warming, it is difficult to find a watershed with
hydrological systems unaffected by a diversity of natural and/or human
powers, for instance, climatic variability and change, water resources

engineering projects and land cover/use change (Jiang et al., 2015; Gao
et al., 2017; Shen et al., 2018). According to the researches of the Three
Gorges Reservoir (TGR) (Bai et al., 2016; Jiang et al., 2017), rainfall
and runoff variables were found non-stationary due to climate change
and human activities. Therefore, it is expected that novel and sophis-
ticated data-driven models can be developed to model the notoriously
non-linear time series in this study.

Fig. 4 shows the distribution of reservoirs, rivers, streamflow gauge
stations and rainfall gauge stations in the study area. The reservoir
inflow and rainfall data are available at a time step of 6 h collected from
2003 to 2016. The observed data of 67 rainfall gauge stations in Re-
gions I (13 stations colored in red in Fig. 4) and II (54 stations colored
in blue in Fig. 4) are utilized for calculating the weighted average areal
rainfall in these two regions separately. A total of 40,992 data (12
(input variables)× 7 years (2003–2009)× 488 data/year (June 1st to
September 30th)) are adopted for training the models whareas 17,568
data (12 (input variables)× 3 years (2010–2012)× 488 data/year
(June 1st to September 30th)) and 23,424 data (12 (input vari-
ables)× 4 years (2013–2016)× 488 data/year (June 1st to September
30th)) are adopted for validating and testing the models, respectively.

Because the travel distance and the travel time of flow running from
each upstream station to the TGR differs, a statistical indicator is
needed to identify the relationship between the flow (or rainfall) of
each upstream station and the inflow of the TGR. In comparison with
other model input selection methods (e.g., the Pearson coefficient, the
Spearman coefficient, and the principal component analysis), the
Kendall tau coefficient (Maidment, 1993) has the advantages that: (1)
the investigative data do not need to satisfy the hypothesis relevant to
the requirement for data to be normally distributed; (2) it is commonly
used to analyze the characteristics of the non-linear correlation be-
tween two datasets; and (3) it has wider applicability owing to its
ability of non-parametric statistical analysis (Méheust et al., 2012; Chen
et al., 2013; Acharya et al., 2014; Lebrenz and Bárdossy, 2017; Paudel
et al., 2017). Therefore, the Kendall tau coefficient analysis is con-
ducted in this study to identify the highest correlation regarding the
time lags between input and output variables. According to the highest
Kendall tau rank correlation coefficients, the time lags between the
inflow of the TGR and flow gauge stations as well as areal rainfall are
set as 48 h (XJB reservoir), 48 h (F1), 48 h (F2), 42 h (F3), 42 h (F4), 24 h
(F5), 18 h (F6), 18 h (F7), 12 h (F8), 42 h (Rainfall-I) and 12 h (Rainfal-
II), respectively. The parameters in each ANFIS model are summarized:
(a) 12 (=N1) input variables; (b) 2 (=N2) membership functions; (c) 48
(N3=2×N1×N2) non-linear parameters in Layer 1; (d) 4096
( =N (N )4 2

N1) fuzzy rules; (e) 1 (=N5) output variable under the single-
output pattern; and (f) 26 (N6=N2×(N1+N5)) linear parameters in
Layer 4. In the SDA, the parameters of learning rate (η), decreasing
factor (α), increasing factor (β) and maximum generation (Gmax) are set
as 0.01, 0.9, 1.1 and 1000, respectively. In the GA, the parameters of
population (Pop), crossover probability (Pc), mutation probability (Pm)
and maximum generation (Gmax) are set as 1000, 0.9, 0.1 and 1000,
respectively.

Considering the travel time of flow running from each upstream
station to the TGR varies between 6 h and 48 h, the model performance
of one- up to eight-step-ahead forecasting (horizons t+ 1 up to t+ 8,
time step=6 h) are investigated. Moreover, the PPTS can project
model performance onto various magnitude ranges of the data. PPTS
(l,100) indicates the peak percent threshold statistics of top l% data.
Therefore, the PPTS is used to verify model performance for the high-
magnitude data in this study. For this purpose, PPTS values associated
with the highest 2%, 5%, 10% and 20% data have been calculated,
respectively. Table 2 summarizes forecast results of the three in-
vestigative models. It appears that the R-ANFIS(GL) model produces
much higher NSE & Gbench values but much smaller RMSE & PPTS va-
lues than the ANFIS(SL) model in all the three (training, validation and
testing) stages. It is noted that for the ANFIS(SL) model, the RMSE & the
PPTS significantly increase and the NSE & the Gbench effectively
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Fig. 3. Error function values of ANFIS models in training stage at horizon t+ 8
(Error function is the Mean Squared Error with normalized dataset).

Y. Zhou et al. Journal of Hydrology 570 (2019) 343–355

350



Fig. 4. Location of the Three Gorges Reservoir (TGR), flow and rainfall gauge stations.

Table 2
Model performance of multi-step-ahead forecasts at with respect to reservoir inflow (ANFIS(SL) vs. R-ANFIS(GL)).

Period Model Indicator Horizon

t+ 1 t+ 2 t+3 t+4 t+ 5 t+ 6 t+ 7 t+ 8

Training ANFIS(SL) PPTS(2%) 0.0321 0.0348 0.0393 0.0423 0.0478 0.0562 0.0636 0.0681
PPTS(5%) 0.0337 0.0366 0.0412 0.0444 0.0502 0.0590 0.0668 0.0715
PPTS(10%) 0.0353 0.0383 0.0432 0.0466 0.0526 0.0618 0.0700 0.0749
PPTS(20%) 0.0386 0.0418 0.0471 0.0508 0.0574 0.0674 0.0763 0.0818
RMSE 867 1063 1218 1472 1862 2026 2301 2452
NSE 0.964 0.955 0.936 0.897 0.859 0.794 0.716 0.659
Gbench 0.909 0.869 0.819 0.749 0.689 0.619 0.539 0.460

R-ANFIS(GL) PPTS(2%) 0.0306 0.0315 0.0349 0.0399 0.0412 0.0489 0.0538 0.0546
PPTS(5%) 0.0321 0.0331 0.0366 0.0419 0.0433 0.0513 0.0564 0.0573
PPTS(10%) 0.0336 0.0357 0.0394 0.0451 0.0466 0.0553 0.0608 0.0618
PPTS(20%) 0.0367 0.0389 0.0430 0.0492 0.0509 0.0603 0.0663 0.0674
RMSE 746 909 1074 1241 1412 1584 1741 1838
NSE 0.983 0.972 0.966 0.945 0.928 0.905 0.886 0.823
Gbench 0.931 0.921 0.881 0.851 0.812 0.772 0.723 0.663

Validation ANFIS(SL) PPTS(2%) 0.0324 0.0355 0.0400 0.0439 0.0469 0.0572 0.0641 0.0693
PPTS(5%) 0.0340 0.0372 0.0420 0.0461 0.0492 0.0600 0.0673 0.0728
PPTS(10%) 0.0356 0.0390 0.0440 0.0483 0.0515 0.0629 0.0705 0.0762
PPTS(20%) 0.0389 0.0425 0.0480 0.0527 0.0562 0.0686 0.0769 0.0832
RMSE 890 1081 1350 1505 1928 2041 2365 2555
NSE 0.963 0.954 0.935 0.896 0.858 0.793 0.715 0.658
Gbench 0.899 0.849 0.789 0.739 0.669 0.599 0.529 0.440

R-ANFIS(GL) PPTS(2%) 0.0296 0.0317 0.0341 0.0362 0.0374 0.0433 0.0473 0.0494
PPTS(5%) 0.0316 0.0340 0.0365 0.0398 0.0410 0.0473 0.0517 0.0549
PPTS(10%) 0.0344 0.0369 0.0412 0.0457 0.0492 0.0584 0.0649 0.0688
PPTS(20%) 0.0375 0.0402 0.0449 0.0498 0.0537 0.0637 0.0707 0.0751
RMSE 763 928 1119 1285 1525 1603 1786 1932
NSE 0.981 0.970 0.964 0.943 0.926 0.903 0.884 0.821
Gbench 0.929 0.919 0.879 0.849 0.809 0.769 0.709 0.649

Testing ANFIS(SL) PPTS(2%) 0.0325 0.0355 0.0404 0.0448 0.0479 0.0573 0.0642 0.0694
PPTS(5%) 0.0341 0.0373 0.0424 0.0471 0.0502 0.0601 0.0675 0.0729
PPTS(10%) 0.0357 0.0391 0.0445 0.0493 0.0526 0.0630 0.0707 0.0764
PPTS(20%) 0.0389 0.0426 0.0485 0.0538 0.0574 0.0687 0.0771 0.0833
RMSE 902 1097 1397 1595 1963 2096 2389 2684
NSE 0.964 0.955 0.936 0.890 0.859 0.794 0.716 0.659
Gbench 0.899 0.829 0.779 0.699 0.629 0.559 0.490 0.420

R-ANFIS(GL) PPTS(2%) 0.0294 0.0313 0.0333 0.0350 0.0357 0.0409 0.0443 0.0462
PPTS(5%) 0.0315 0.0335 0.0356 0.0384 0.0392 0.0448 0.0484 0.0514
PPTS(10%) 0.0335 0.0355 0.0396 0.0439 0.0468 0.0548 0.0608 0.0645
PPTS(20%) 0.0373 0.0400 0.0446 0.0489 0.0527 0.0623 0.0692 0.0734
RMSE 775 937 1188 1307 1563 1626 1825 2004
NSE 0.983 0.972 0.966 0.945 0.928 0.905 0.886 0.823
Gbench 0.929 0.919 0.869 0.839 0.799 0.749 0.689 0.619
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decrease in all stages at earlier time steps (from t+2 up to t+ 5). In
contrast, the values of the RMSE, the PPTS, the NSE and the Gbench for
the R-ANFIS(GL) model remain relatively stable. The results show that
the recurrent (delayed) outputs of the proposed model do provide va-
luable information to increase multi-step-ahead flood forecast accuracy.
It is depicted further from Table 2 that the PPTS increases gradually as
the forecast horizon increases from t+ 1 to t+ 8, and the largest in-
crements in PPTS along the forecast horizon are made by the ANFIF
(SL) while the smallest ones are made by the R-ANFIS(GL). In addition,
the R-ANFIS(GL) illustrates its preeminence over the ANFIF (SL) in
forecasting high values of flooding at 2% and 5% frequencies while
both models show similar performance at 10% and 20% frequencies. It
is noticed that different data sets would cause different variations in
PPTS, which could provide an alternative solution to critically selecting
a suitable flood forecasting model.

We then assess the model predictability for different forecast hor-
izons. According to Table 2, the R-ANFIS(GL) model produces better
performance in all the three (training, validation and testing) stages,
whereas the ANFIS(SL) model performs well only in the training stage
at horizons up to t+ 3 (NSE is higher than 0.90, and Gbench is higher
than 0.80). The results show that the proposed evolutionary algorithm
(combines GA and LSE) for the R-ANFIS(GL) model makes impressive
achievements in model stability and generalizability. Besides, the
ANFIS(SL) model produces small NSE and Gbench values (lower than
0.90 and 0.65 at horizon t+ 5 and even lower than 0.70 and 0.45 at
horizon t+ 8, respectively) in testing datasets, whereas the R-ANFIS
(GL) model produces high NSE and Gbench values (higher than 0.94 and
0.80 at horizons up to t+ 4 (one day ahead) and higher than 0.80 and
0.60 at horizon t+ 8 (two days ahead), respectively) in testing datasets.
Given the maximal lag time, i.e. horizon t+ 8 (two-day ahead), the R-
ANFIS(GL) model can improve the NSE and the Gbench by 24.89% and
47.62% as well as reduce the RMSE and the PPTS(2%) values by

25.34% and 33.43% in the testing stage, respectively, as compared to
the ANFIS(SL). Apparently, the predictability of the R-ANFIS(GL) model
for future forecast horizons is significantly better than that of the ANFIS
(SL) model. As shown in Fig. 5, there is an interesting finding that the
improvement rates in terms of RMSE, PPTS, NSE and Gbench values
significantly increase at horizons from t+ 1 to t+ 8. In other words,
the R-ANFIS(GL) can gain more advantages than the ANFIS(SL) as the
forecast horizon increases. From the perspective of indicator function,
the RMSE, the PPTS and the Gbench are sensitive to mid-high flow
magnitudes while the NSE is sensitive to flood volume. That means the
proposed R-ANFIS(GL) model not only could largely increase forecast
accuracy at mid-high flow magnitudes but also could improve the
goodness-of-fit to flood volume at the same time. The results demon-
strate that the R-ANFIS(GL) model is able to produce more stable and
accurate multi-step-ahead forecasts by means of extracting the features
of the non-stationary processes between rainfall and runoff. These im-
provements made by the R-ANFIS(GL) provide substantial evidence and
much more confidence in flood control and water resources manage-
ment for the TGR because the two-day-ahead forecasting is extremely
critical and valuable to the TGR.

To clearly differentiate the capability of the ANFIS(SL) and R-ANFIS
(GL) models, a flood event with maximal peak-flow reaching
69,100 cms is selected to test both models through assessing the
goodness-of-fit between observations and forecasts, as shown in Fig. 6.
It indicates that the R-ANFIS(GL) is able to forecast well at horizons
t+ 5 up to t+ 8, whereas the ANFIS(SL) model has obvious time-lag
phenomena as well as larger gaps between observations and forecasts.
That is to say, the ANFIS(SL) model fails to forecast inflow values
adequately at horizons more than t+ 5. It shows that the R-ANFIS(GL)
model is able to effectively trace the trails of flood events, significantly
mitigate time-lag effects, and produce much accurate and reliable
multi-step-ahead flood forecasts. Nevertheless, all the uncertainties

(a) RMSE (%)   (b) PPTS (%) 

(c) NSE (%) (d) Gbench (%) 

Fig. 5. Improvement rates in terms of RMSE, PPTS, NSE and Gbench in the testing stage of the R-ANFIS(GL) for multi-step-ahead flood forecasts at the Three Gorges
Reservoir (TGR), as compared with the ANFIS(SL). = ×− −Improvementrateofeachindicator 100%|Indicator(ANFIS(SL)) Indicator(R ANFIS(GL))|

Indicator(ANFIS(SL))
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residing in model input, model structure and parameters could be the
sources that cause the time-lag effects of the ANFIS(SL) and R-ANFIS
(SL). In this study, we pay more attention to the exploration of the
recurrent mechanism (i.e., model structure) and model parameter op-
timization (i.e., the evolutionary algorithm) for making multi-step-
ahead flood forecasts through conquering the overfitting and instability
bottlenecks. It is noted that the reasons for causing the time-lag effects
of the ANFIS(SL) model consist of: (1) the instability phenomenon oc-
curs at the ANFIS(SL) model; (2) for the Chang-Jiang River Basin with
fast urban development, its regional meteorology frequently interacts
with intensive human activities and climate change that gives rise to
the non-stationary processes between rainfall and runoff while the
ANFIS(SL) with a static learning mechanism is not able to well capture

non-stationary features; and (3) for forecast horizons from t+1 up to
t+ 8, no real-time information of rainfall or runoff is available to the
ANFIS model while the R-ANFIS model is able to effectively utilize the
forecasted runoffs from horizon t+ 1 up to horizon t+ 7 by dint of the
recurrent mechanism that feeds the previous model outputs back to the
input layer through a time-delay memory of k units (see Fig. 1). It is also
noted that the proposed ANFIS(GL) model could alleviate the time-lag
effects of multi-step-ahead forecasts but could not fully eliminate the
effects. That is to say, to further improve forecast accuracy, it would
need to fuse the forecasted values of external input variables (e.g.,
rainfall) into the multi-step-ahead flood forecast model.
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Fig. 6. Multi-step-ahead flood forecasts for the Three Gorges Reservoir (TGR) (a flood event with maximal peak-flow exceeding 69,000 cms was selected for testing
the constructed models).
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5. Conclusions

In this study, we explored an evolutionary recurrent ANFIS for
modelling multi-step-ahead flood forecasts. The demand for adaptation
and evolutionary strategies for configuring ANFIS neural networks is
due to real-world applications in modelling non-stationary environ-
ments. Three neuro-fuzzy learning models, including a traditional
ANFIS that uses the steepest descent algorithm and the least square
estimator (ANFIS(SL)), a recurrent ANFIS (R-ANFIS(SL)), and an R-
ANFIS(GL) that uses an evolutionary optimization algorithm, are con-
figured to model time series. These constructed models were assessed
and compared using a famous benchmark chaotic time series as well as
historical reservoir inflow series of the Three Gorges Reservoir in China.
The main merit of the proposed R-ANFIS(GL)) neural network not only
lies in the avoidance of the local minima problems and model instability
but in reducing error accumulation and propagation faced in multi-
step-ahead forecasting.

The results of the three models applied separately to the Mackey-
Glass time series demonstrated that the R-ANFIS(GL) prominently
outperformed the other two comparative models for all the training,
validation and testing cases at different horizons (Table 1 and Fig. 2).
The results also indicated that the increments of the RMSE along
forecast horizon (i.e. from t+ 1 to t+ 8) of three models were the
largest for the ANFIS(SL) while the smallest for the R-ANFIS(GL). Be-
sides, the differences in RMSE values between the ANFIS(SL) and R-
ANFIS(GL) increased with forecast horizon, similarly for Gbench values.
It indicates that small prediction errors happening in the beginning
would cumulate and propagate to the future when using the derivative
optimization algorithm (i.e. SL) in the ANFIS, which would thus reduce
the multi-step-ahead forecast accuracy.

According to the assessment on the two flood forecast models (i.e.
the traditional ANFIS(SL) and our proposed R-ANFIS(GL) established
for the TGR, the results (Table 2 and Fig. 5) clear indicate that the
proposed R-ANFIS(GL) model could provide much better forecast the
inflow series in the long forecast horizon and significantly mitigate
time-lag phenomena than those of the ANFIS(SL). The reason that the
traditional ANFIS(SL) model failed to achieve satisfactory multi-step-
ahead forecast results in training, validation and testing stages could
result from the instability caused by the inherent derivative operation.
That is to say, the ANFIS demands for more sophisticated techniques,
such as recurrent mechanism and/or evolutionary algorithm, to in-
crease model stability and generalizability.

Because the ultimate goal concerns real-time forecast accuracy, the
results of this study demonstrated that the proposed R-ANFIS(GL)
model could provide reliable as well as precise multi-step-ahead flood
forecasts owing to two key strategies: the incorporation of the ante-
cedent observed values of external input variables into the recurrent
mechanism for mitigating error accumulation and propagation; and the
evolutionary operation of the GL for parameter optimization. In tech-
nical aspects, the output of the static neural network (ANFIS(SL)) relied
solely on observed data whereas the output of the recurrent neural
networks (R-ANFIS(GL)) would depend upon the optimal integration of
observed data and forecasted data with time-delay units through
feedback connections and thus significant contribution could be made
to model outputs. The recurrent neuro-fuzzy networks have the merit of
effectively extracting the input/output dependency and dynamic pro-
cess owing to their recursive outputs and fuzzy clustering mechanism.
From the perspectives that cause time lags, the recurrent neuro-fuzzy
networks, however, could not fully eliminate the time-lag bottleneck
encountered in multi-step-ahead forecasting due to the complex inter-
relation and lacking observed rainfall/runoff input values. Therefore,
our future work will focus on the incorporation of the forecasted values
of external input variables (e.g., rainfall) into multi-step-ahead flood
forecasting for further enhancing forecast accuracy. Additionally, this
study concentrates on deterministic data-driven models for multi-step-
ahead flood forecasting while more state-of-the-art AI techniques, for

instance, the ensemble and probabilistic forecast techniques, could be
integrated into data-driven models to reduce the uncertainties in multi-
step-ahead flood forecasting in future research.
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