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Air quality deteriorates fast under urbanization in recent decades. Reliable and precise regional multi-step-ahead
PM2.5 forecasts are crucial and beneficial for mitigating health risks. This work explores a novel framework (MM-
SVM) that combines the Multi-output Support Vector Machine (M-SVM) and the Multi-Task Learning (MTL) algo-
rithm for effectively increasing the accuracy of regional multi-step-ahead forecasts through tackling error accumu-
lation and propagation that is commonly encountered in regional forecasting. The Single-output SVM (S-SVM) is
implemented as a benchmark. Taipei City of Taiwan is our study area, where three types of air quality monitoring
stations are selected to represent areas imposed with high traffic influences, high human activities and commercial
trading influences, and less human interventions close to nature situation, respectively. We consider forecasts of
PM2.5 concentrations as a function ofmeteorological and air quality factors based on long-term (2010–2016) obser-
vational datasets. Firstly, the Kendall tau coefficient is conducted to extract key spatiotemporal factors from regional
meteorological and air quality inputs. Secondly, the M-SVMmodel is trained by theMTL to capture non-linear rela-
tionships and share correlation information across related tasks. Lastly, theMM-SVMmodel is validatedusinghourly
time series of PM2.5 concentrations as well as meteorological and air quality datasets. Regarding the applicability of
regionalmulti-step-ahead forecasts, the results demonstrate that theMM-SVMmodel ismuchmorepromising than
the S-SVMmodel because only one forecast model (MM-SVM) is required, instead of constructing a site-specific S-
SVMmodel for each station. Moreover, the forecasts of theMM-SVM are found better consistent with observations
than those of any single S-SVM in both training and testing stages. Consequently, the results clearly demonstrate
that theMM-SVMmodel could be recommended as a novel integrative technique for improving the spatiotemporal
stability and accuracy of regional multi-step-ahead PM2.5 forecasts.
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1. Introduction
Air pollution is a serious environmental issue attracting more and
more attention globally (Apte et al., 2015; Di et al., 2016; Li and Zhu,
2018). A great number of developing countries undergo heavy air
pollution (Coelho et al., 2014; Liao et al., 2017; Lv et al., 2016). For in-
stance, extreme air pollution events take place frequently in Taipei
City, Taichung City and Kaohsiung City of Taiwan (Li et al., 2017).
Fine airborne particles (e.g. PM2.5) can penetrate into throats and
even into lungs through deep breathing. Long-term exposure to
these fine particles would increase the incidence of air pollution-
related diseases (e.g., respiratory and cardiovascular diseases, lung
function reduction, and heart attacks) and cause serious effects on
human health (Xu et al., 2016; Yu and Stuart, 2017). Real-time air
quality information is of great importance to air pollution control
and human health protection from air pollution (Huang et al.,
2014). Therefore, it is imperative to predict air quality to better gov-
ern the trend of air pollution variation so as to provide prompt and
complete environmental quality information for assisting in envi-
ronmental management decisions as well as avoiding serious acci-
dents in relation to air pollution (Wang et al., 2016; Yang et al.,
2018; Tong et al., 2018).

Environmental prediction can be very beneficial to the protection
of human health and welfare from pollutions. Many countries de-
velop their own real-time nationwide Air Quality Forecast (AQF)
Systems (e.g. http://www.nws.noaa.gov/aq) using various tech-
niques. These techniques vary greatly in levels of sophistication. In
general, there are two basic types of AQF models: deterministic
and empirical models. Deterministic models commonly apply funda-
mental principles of atmospheric chemistry and physics involved in
emission and transformation processes of air pollution to simulating
and/or forecasting air quality. However, relevant studies indicate
that deterministic models are less accurate than well-developed
site-specific empirical air quality forecast models due to the highly
complex and dynamic pollution processes of air quality and the un-
certainties within models as well as pollution emission estimation
(Cobourn, 2010; Lv et al., 2016). Empirical models use various statis-
tical and/or machine learning techniques to quantify the underlying
complex relationships between air pollutants and potential predic-
tors based on large numbers of data sets under various atmospheric
conditions (Cobourn, 2010; Hrust et al., 2009). Among these models,
artificial neural networks (ANNs), a crucial branch of Artificial Intel-
ligence (AI), have been frequently utilized to make PM2.5 forecasts
(e.g., Oprea et al., 2016; Nieto et al., 2018; Zhu et al., 2018). For in-
stance, the back propagation neural networks (BPNN), radial basis
function (RBF), Elman recurrent neural network, non-linear
autoregressive with exogenous inputs neural network (NARX),
adaptive-network-based fuzzy inference system (ANFIS) and sup-
port vector regression (SVM) models have been widely applied to
modelling air quality (Voukantsis et al., 2011; Ping et al., 2015;
Yamane et al., 2015; Bai et al., 2016; Prasad et al., 2016; Gong and
Ordieres, 2016; Yeganeh et al., 2018; Zhai and Chen, 2018). Never-
theless, these models have a common drawback, i.e., prone to sys-
tematically underpredicting particulate matter concentrations
during days with very high particulate matter concentrations. As
known, these are the very events that impose the most adverse ef-
fects on human health. In order to capture the abrupt changes in par-
ticulate matter concentrations through statistical approaches, some
prior knowledge and more sophisticated modelling techniques are
needed. We notice that all the above-mentioned methods usually
construct site-specific data-driven models for each air quality moni-
toring station individually and disregard the potential nonlinear
spatial correlation among different air quality monitoring stations.
Bearing this in mind as a motivation, the multi-task learning (MTL)
algorithm has been designed to share correlation information across
tasks, and each task might benefit from the others (Baxter, 1997).
When relations exist between tasks, the MTL algorithm can learn
all tasks simultaneously, instead of learning each task independently
as traditional approaches do. The MTL algorithm has been widely ap-
plied with satisfactory results to multi-output forecast issues (Zhang
et al., 2014; Liu et al., 2015; Zhu et al., 2016; Xu et al., 2018).

Themulti-output data-drivenmodel adapted in forecasting is gener-
ally the instance that theunderlyingnonlinear correlation amongdiffer-
ent output variables could be identified and contribute to forecast
accuracy, such as spatiotemporal ANNs (Nguyen et al., 2012) and deep
learning architectures for air quality predictions (Li et al., 2016). These
multi-output data-driven models primarily focused on the mid-long
term forecasting of PM2.5 concentration but did not involve real-time
multi-step-ahead PM2.5 concentration forecasting. The demand for
multi-step-ahead PM2.5 forecasts has increased the implementation dif-
ficulty of single-output data-driven models, especially for providing a
good representative of regional air quality features. Hence, it is essential
to conduct in-depth research with multi-input and multi-output data-
driven models to conquer the complexity and challenges encountered
in regional air quality forecasts for effectively enhancing forecast stabil-
ity and accuracy.

Given the severity of health and economic impacts of PM2.5, reli-
able and precise PM2.5 forecasting is urgently needed to implement
early municipal warnings, crisis responses and emergency planning
for mitigating health risks. Inspired by multi-task learning, a frame-
work (MM-SVM) combining the Multi-output Support Vector Ma-
chine (M-SVM) and the Multi-Task Learning (MTL) algorithm is
proposed for modelling regional multi-step-ahead PM2.5 forecasts
in this study. Meanwhile, the innovative nature of this study is in-
debted to the hybrid of the M-SVM and the MTL algorithm as well
as its application for the first time to regional multi-step-ahead
PM2.5 forecasting. This study is explored with twomain foci: (1) pro-
pose a multi-input and multi-output support vector machine model
(M-SVM) for making regional PM2.5 forecasts simultaneously; and
(2) apply a multi-task learning algorithm to train the multi-output
SVM model for sharing correlation information across related tasks.
The proposed M-SVM data-driven model, trained by the multi-task
algorithm, is implemented not only to identify the complex spatio-
temporal pattern between regional meteorological inputs, air qual-
ity inputs and PM2.5 multi-outputs at multiple air quality
monitoring stations but to assess model reliability and accuracy via
a detailed case study on the regional ground-level PM2.5 forecasting
in Taipei City of Taiwan. The original single-output SVM (S-SVM) is
examined for comparative purpose. The remainder of the study is
structured as follows: Section 2 presents the methods used in the
analysis; Section 3 introduces the study area and materials;
Section 4 presents discusses and results, and conclusions are then
drawn in Section 5.

2. Methodology

The purpose of this paper is to verify the aforementioned argument
and to propose a multi-input and multi-output data-driven model
under the SVM architecture for improving forecast accuracy, where a
multi-task learning algorithm is implemented with weight adjustment
in training stages. The architectures of the S-SVM model (Fig. 1(a))
and the proposedMM-SVMmodel (Fig. 1(b)) are illustrated in Fig. 1, re-
spectively. Multiple independent S-SVM models are constructed as a
benchmark. The proposed MM-SVM model that aims at making re-
gional multi-output forecasts and its overall effectiveness are shown
in the following sections.

2.1. Single-output support vector machine (S-SVM)

The S-SVM is known to extract the pattern between multi-input
variables and the single-output from an observed dataset with inde-
pendent and identical distribution. Multiple independent S-SVM

http://www.nws.noaa.gov/aq


Fig. 1. Architecture of Support Vector Machine (SVM). a. Single-output SVM (S-SVM). b. Hybrid multi-output SVMwith multi-task learning (MM-SVM).
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models (Fig. 1(a)) are constructed to make air-quality forecasts at
various monitoring stations, described below.

Ŷ t þ nð Þ ¼
XN
i¼1

ωi∙K z; zið Þ þ bið Þ ð1Þ
where Ŷðt þ nÞ is the forecasted value of the output variable at hori-
zon t + n. K(∙, ∙) is the Kernel function. z is one of variables in the
dataset of observed exogenous (X(t), X(t − 1), …, X(t − p)) and
autoregressive (Y(t), Y(t − 1), …, Y(t − q)) input variables. p and
q are the time-lags of observed exogenous and autoregressive
input variables, respectively. zi is the ith input variable, and i = 1,2,
…, N. N is the total number of input variables, and N = p + q + 2.

Image of Fig. 1
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ωi and bi are the parameters of the weight and the bias for the ith
input variable in the S-SVM model, respectively.

The S-SVM solves the problem of single-output forecasting (Eq. (1))
by searching the optimal parameters of the weight (ω) and the bias (b)
that minimize the objective function subject to constraints, described as
follow.

min g w; ξð Þ ¼ 1
2
ωTω þ γ

1
2
ξTξ ð2aÞ

subject to

Ŷ t þ nð Þ ¼
XN
i¼1

ωi∙K z; zið Þ þ bið Þ þ ξ ð2bÞ

where g(∙, ∙) is the objective function in the single-output forecast prob-
lem. ξ is the slack variable. γ is the positive real regularized parameter
for the slack variable. The conjugate gradient algorithm considered as
one of fast and efficient optimization techniques could be used to han-
dle the optimization problem shown in Eqs. (2a) and (2b) (Liu et al.,
2015).

2.2. Multi-output support vector machine (M-SVM)

Under the condition of the same multiple inputs with the S-SVM
model, the M-SVM model is proposed to extract the mapping relation
frommulti-input variables tomulti-output variables. That is to say, it re-
quires only one M-SVM model to forecast regional multi-outputs, de-
scribed below.

Ŷ1 t þ nð Þ ¼
XN
i¼1

w0 þ υ1;i
� �

∙K z; zið Þ þ b1;i
� � ð3Þ

Ŷ2 t þ nð Þ ¼
XN
i¼1

w0 þ υ2;i
� �

∙K z; zið Þ þ b2;i
� � ð4Þ

Ŷm t þ nð Þ ¼
XN
i¼1

w0 þ υm;i
� �

∙K z; zið Þ þ bm;i
� � ð5Þ

ŶM t þ nð Þ ¼
XN
i¼1

w0 þ υM;i
� �

∙K z; zið Þ þ bM;i
� � ð6Þ

w0 ¼ λ
M

XM
m¼1

υm ð7Þ

where Ŷ1ðt þ nÞ, Ŷ2ðt þ nÞ, Ŷmðt þ nÞ and ŶMðt þ nÞ are the forecasted
values of the 1st, 2nd, mth and Mth output variables at horizon t + n,
and m = 1,2, …,M. M is the total number of multi-output variables.
υm = [υm, 1,υm, 2,…,υm, N] is the vector of the weight parameters for
the mth output variable. υ1, i υ2, i, υm, i, υM, i and b1, i, b2, i, bm, i bM, i are
the parameters of the weights and the biases for the ith input variable
upon the 1st, 2nd, mth and Mth multi-output variables, respectively,
where the υm, i is a small value close to 0 (→0) if the multi-outputs are
very similar to each other. w0 is the mean weight of the multi-output
variables in the M-SVM model and represents the correlation among
multi-output variables, where w0 is a small value close to 0 (→0) if the
multi-outputs are significantly distinct from each other. λ is the positive
real regularized parameter for mean weight.

The M-SVM solves the problem of multi-output forecasts (Eqs. (3)–
(7)) by searching the optimal parameters of the weight vector V= (υ1,
i,υ2, i,…,υM, i) and the bias vector B= (b1, i,b2, i,…,bM, i) that minimizes
the objective function subject to constraints, described as follow.

min G w0;V ; ℇð Þ ¼ 1
2
ω0

Tω0 þ 1
2
λ
M

VTV þ γ
1
2
ℇTℇ ð8Þ

subject to

Ŷ1 t þ nð Þ ¼
XN
i¼1

w0 þ υ1;i
� �

∙K z; zið Þ þ b1;i
� �þ ξ1 ð9Þ

Ŷ2 t þ nð Þ ¼
XN
i¼1

w0 þ υ2;i
� �

∙K z; zið Þ þ b2;i
� �þ ξ2 ð10Þ

Ŷm t þ nð Þ ¼
XN
i¼1

w0 þ υm;i
� �

∙K z; zið Þ þ bm;i
� �þ ξm ð11Þ

ŶM t þ nð Þ ¼
XN
i¼1

w0 þ υM;i
� �

∙K z; zið Þ þ bM;i
� �þ ξM ð12Þ

where G(∙, ∙ , ∙) is the objective function in the multi-output forecast
problem. ℇ = (ξ1,ξ2,…,ξM) is the vector of slack variables.

Eqs. (8)–(12) are reformulated into a linearmatrix equation system,
described as follow.

S 0
0 H

� �
B

H−1PBþw0

� �
¼ PTH−1Y

Y

� �

S ¼ PTH−1P

H ¼ ZTZ;M;M
h i

þ 1
γ
IþM

λ
ZTZ ð13cÞ

where S is the positive definite matrix. P is the identity matrix with M
columns. H is the transformation matrix. I is the identity matrix with
M columns and M rows. Z is the matrix of input variables, and Z = [z1,

z2,…, zN]. Y is the matrix of multi-output variables, and Y ¼ ½Ŷ1ðt þ nÞ;
Ŷ2ðt þ nÞ;…; ŶMðt þ nÞ�.

Inasmuch as the common techniques for optimizing the parameters
of the standardM-SVMmodel, including the gradient descent algorithm
and the conjugate gradient algorithm, are easily trapped in the bottle-
necks of falling into local minima and are time-consuming, they could
not effectively solve the joint optimization of parameters of the M-
SVM model. That is to say, the M-SVM model possesses not only a
more complex model structure but also much more parameters than
the S-SVM model, which implies the M-SVM model demands for more
sophisticated techniques to greatly contribute to model stability and
generalizability.

2.3. Hybriding the M-SVM model and multi-task learning algorithm (MM-
SVM)

TheMTL proposed by Baxter (1997) has the capability to synergisti-
cally optimize the parameters of multi-output models. Many studies
empirically as well as theoretically demonstrated that learningmultiple
related tasks simultaneously, with a hope of appropriate information
sharing across tasks, would significantly improve model performance,
as compared to learning each task independently (e.g., Chandra et al.,
2017; Zhao et al., 2017; Shireen et al., 2018).

For S-SVM andM-SVMmodels, the radial basis function is set as the
Kernel function, described below.

K z; zið Þ ¼ e−θ z−zik k2 ð14Þ

where θ is the parameter of the radial basis function, and the radial basis
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function is the Gaussian function if the θ is equal to 1
2σ2 (σ is the standard

deviation).
For the MM-SVM model constructed in this study, the MTL algo-

rithm used to train the M-SVM implements the following computation
steps.
Initialization: initialize the radial basis function parameter (θ1 N 0), the positive
real regularized parameter (γ1 N 0) of the slack variable, the positive real
regularized parameter (λ1 N 0) of the weight based on the grid dataset {2−k,2−k

+2,…,2k} (Evgeniou and Pontil, 2004), as well as the maximal generation
number (Gmax).

For j = 1, …, Gmax

Step 1: input (θi,γi,λi) and solve η and β of matrix equations Hη = P and Hβ = Y
according to the linear matrix equation system, respectively (Eqs. (13a), (13b),
(13c)).
Step 2: calculate the positive definite matrix S = PTη.
Step 3: search solution: B = S−1ηTY and V = β − ηB.
Step 4: terminate the computation according to the stop criteria by evaluating the
solution (B and V) based on the following error function through Steps 1–3.

MSE ¼ 1
2T

PT
t¼1 ðŶmðt þ nÞ−Ymðt þ nÞÞ2 (15)

where MSE is the mean square error. Ŷmðt þ nÞ and Ym(t + n) are the forecasted
and the observed value of the mth output variable at horizon t + n, respectively. T
is the number of time steps.
If the iteration number is less than the Gmax, then repeat Steps 1–3. Otherwise, stop
and output the optimized parameters corresponding to the minimal error function
MSE.
End for
Output: Save the optimized parameters of the fully trained M-SVM model, includ-
ing the radial basis function parameter (θ∗), the positive real regularized param-
eter (γ∗) of the slack variable, the positive real regularized parameter (λ∗) of
weights, the weight vector (V∗) and the bias vector (B∗).
The comparison between S-SVM and MM-SVM models is summa-
rized as: (1) the former is a single-output model while the latter is a
multi-output data-driven model in the perspective of model architec-
ture, hence the former needs to constructmultiplemodelswhile the lat-
ter needs to construct only one model for regional multi-output
forecasting; (2) there are N × M weight parameters for M independent
S-SVMmodels while there are N × Mweight parameters and one posi-
tive real regularized parameter (λ) of mean weight for the MM-SVM
T
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Fig. 2. Distribution of air quality and meteorological monitoring stations in Taipei City. Stations
traffic). Stations A3 (Songshan) and A4 (Shilin) are general stations. Station A5 (Yangming) is
model. In other words, themeanweightwith a positive real regularized
parameter (λ) in the MM-SVM model is utilized to share the potential
nonlinear spatial correlation among air quality monitoring stations;
and (3) the former could utilize many mature optimization methods
(e.g., the conjugate gradient method) for optimizing model parameters
while the latter demands for more sophisticated techniques, such as the
multi-task learning algorithm, to optimize model parameters.

3. Study area and materials

With the fast-growing economy and population, air quality deterio-
ration in Taiwanhas becomea hot topic in recent years. Taipei City is the
center of politics, commerce, and culture in Taiwan and covers an area
of 272 km2 with a population of 2.69 million in 2016. People across
Taipei City nowadays are forced to deal with the high-level invasion of
PM2.5. Air pollution is not just about sore throats and respiratory dis-
eases but a matter of life or death. Therefore, healthy and green urban
development demands for accurate multi-step-ahead PM2.5 forecasts
that adequately deal with the high variability of regional air quality.

Fig. 2 shows the locations of Taipei City, 16 meteorological monitor-
ing stations and five air quality monitoring stations in the study area.
Among them, Stations A1 (Yonghe) and A2 (Sanchong) are traffic sta-
tions (i.e., stations located in areas of heavy traffic), Stations A3
(Songshan) and A4 (Shilin) are general stations, and Station A5
(Yangming) is a park station (i.e., a station located in the
Yangmingshang Park). Traffic stations are the representative of traffic
loads for monitoring the primary air pollutant mechanism. General sta-
tions are the representative of human activities and commercial trading
formonitoring the secondary air pollutantmechanism. Park stations are
the representative of natural situations, with less human intervention.
More description about the functions of the five stations could be
found in the official statement releasedby theEnvironmental Protection
Administration (EPA), ROC (https://taqm.epa.gov.tw/taqm/en/b0101.
aspx). It is noted that park stations selected by our EPA for monitoring
air quality are in use for conservation purpose. The locations of themon-
itoring sensors installed at park stations would keep away from auto-
mobile roads, parking lots, combustion sources and industrial
factories. As compared with traffic, industrial and general stations, air
aipei City 

A2 
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A3 
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A1 (Yonghe) and A2 (Sanchong) are traffic stations (i.e. stations located in areas of heavy
a park station (i.e. a station located in a park).

https://taqm.epa.gov.tw/taqm/en/b0101.aspx
https://taqm.epa.gov.tw/taqm/en/b0101.aspx
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Table 1
Statistic indexes of seasonal PM2.5 concentration at five air quality monitoring stations in
Taipei City.

Season Statistic index Air quality monitoring stations

A1ab A2 A3 A4 A5

Spring Maximum 377 b 358 259 278 147
Mean 25 27 21 18 13
Minimum 0 0 0 0 0
Standard deviation 18 16 13 12 8

Summer Maximum 226 215 155 167 88
Mean 15 16 13 11 8
Minimum 0 0 0 0 0
Standard deviation 11 10 8 7 5

Autumn Maximum 264 251 181 195 103
Mean 18 19 15 13 9
Minimum 0 0 0 0 0
Standard deviation 13 11 9 8 6

Winter Maximum 358 340 246 264 140
Mean 24 26 20 17 12
Minimum 0 0 0 0 0
Standard deviation 17 15 12 11 8

Annual Maximum 377 358 259 278 147
Mean 22 24 17 15 10
Minimum 0 0 0 0 0
Standard deviation 16 15 10 10 6

a Stations A1 (Yong-He) and A2 (San-Chong) are traffic stations (i.e. stations located in
areas of heavy traffic). Stations A3 (Song-Shan) and A4 (Shi-Lin) are general stations. Sta-
tion A5 (Yangming) is a park station (i.e. a station located in a park).

b unit: μg/m3

Table 2
Results (mean values) of the correlation analysis between input variables and the output
variable using the Kendall tau coefficient.

Station name Eight air quality factors at 5
air-quality monitoring stations

Five meteorological factors at
16 meteorological monitoring
stations

t + 1 t + 2 t + 3 t + 4 t + 1 t + 2 t + 3 t + 4

A1 0.84 0.73 0.59 0.54 0.75 0.68 0.61 0.52
A2 0.83 0.75 0.62 0.51 0.81 0.72 0.64 0.53
A3 0.77 0.58 0.45 0.37 0.83 0.74 0.67 0.55
A4 0.67 0.61 0.41 0.29 0.86 0.79 0.67 0.55
A5 0.72 0.58 0.39 0.18 0.78 0.67 0.59 0.54
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quality at the park station (i.e., located in the Yangmingshang Parkwith
elevations ranging from 200 to 1120 m) in this study is considered rep-
resentative of the situation close to nature

Data of five meteorological factors (rainfall, temperature, wind
speed, wind direction and relative humidity) and eight air quality fac-
tors (PM2.5, PM10, O3, NOx, NO2, NO, SO2, CO) collected from 2010 to
2016 (7 years) in the study area are available. A total of 61,368 (=[(2
× 366) + (5 × 365)] × 24) hourly datasets are used in this study,
where 35,064 data (4 years) are used for model training while the re-
maining 26,304 data (3 years) are used for model testing.

To reduce the negative effect of the different scales of input data on
model's learning ability, all thirteen input variables are standardized to
the same scale. To obtain stable convergence of the developed model,
the normal standardization is applied to data pre-processing. The stan-
dardization formula is defined as follows.

X� tð Þ ¼ X tð Þ−X
σ

ð16Þ

where X∗(t) is the normal standardization for input data in the tth time.
X and σ are the average and standard deviation of input data,
respectively.

The Root-Mean-Square-Error (RMSE) and the goodness-of-fit with
respect to the benchmark (Gbench) are carried out for comparison pur-
pose. The RMSE and Gbench are defined as follows.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

Ŷ tð Þ−Y tð Þ
� �2

vuut ; RMSE≥0 ð17Þ

Gbench ¼ 1−

PT
i¼1 Ŷ tð Þ−Y tð Þ

� �2

PT
i¼1 Y tð Þ−Ybench tð Þð Þ2

0
B@

1
CA� 100%; Gbench≤100% ð18Þ

where ŶðtÞ and Y(t) is the forecasted and observed values of the output
variable at the tth time, respectively. Ybench(t) is the observed data
shifted backwards by one or more time lags, e.g., for the nth-step-
ahead forecast, Ybench(t)=Y(t − n).

Table 1 presents the statistic indexes of seasonal PM2.5 concentration
at five air quality monitoring stations. We notice that the statistic in-
dexes of the maximum, average and standard derivation at traffic sta-
tions (A1 and A2) are the highest while those in the park station (A5)
are the lowest, which could be due to the primary source of particulate
matter of a station. For instance, vehicle exhaust emission is the primary
source of particulate matter at traffic stations; air pollutant emission
from residential and commercial activities is the primary source of par-
ticulatematter at general stations; and atmospheric transport is the pri-
mary trigger of particulate matter at the park station. In other words,
vehicle transportation is a stronger driving force of air pollutant than
human activities in Taipei City. It is noted that the five monitoring sta-
tions do represent three situations (traffic, general and park stations)
and significant differences show up by the characteristics of the moni-
toring data. The statistical analysis shown in Table 1 provides persuasive
evidence to support the division of the air quality monitoring stations
released by the official statement of our EPA.

As compared with other correlation analysis techniques
(e.g., Pearson coefficient, Spearman coefficient, or principal component
analysis), the Kendall tau coefficient (Maidment, 1993) has advantages
including: (1) the investigative data need not to satisfy the hypothesis
relevant to the requirement for a normal distribution; (2) it is com-
monly used to analyze the non-linear correlation characteristics be-
tween two datasets; and (3) it has wider applicability owing to its
ability of non-parametric statistical analysis (Chang et al., 2012;
Méheust et al., 2012; Chen et al., 2013). Therefore, the Kendall tau coef-
ficient is conducted in this study to identify the highest correlation re-
garding the time lags between input variables (meteorological and air
quality factors) and output variables (PM2.5). As known, longer time
lags imply a demand for more model inputs, which would increase
model complexity and raise model uncertainty (Jiang et al., 2017; Zhai
et al., 2018). For achieving a reduction of white noise in multi-input
and multi-output data-driven models applied to regional multi-step-
ahead PM2.5 forecasting, the threshold of Kendall tau coefficient is set
as 0.5 in this study so that only time lags with higher correlation values
(i.e., N0.5) would be selected as model inputs to produce more stable
and reliable forecasting results. Table 2 shows the results (mean values)
of the correlation analysis between input variables and output variables
using the Kendall tau coefficient. According to the highest values of the
Kendall tau coefficients (≥0.5), the time lags of air-quality factors are set
as 1 h–4 h for traffic stations (A1 and A2) and 1 h–2 h for general and
park stations (A3, A4, and A5) while the time lags for meteorological
factors are set as 1 h–4 h at 16 meteorological monitoring stations, re-
spectively. Five independent S-SVMmodels are established individually
for five air quality monitoring stations, but only one MM-SVMmodel is
established for the same five air qualitymonitoring stations. The param-
eters of the S-SVM models and the MM-SVM model are the same, ex-
cept for the positive real regularized parameter (λ) of mean weight in
the MM-SVM model. S-SVM and MM-SVM models are evaluated by
the RMSE and Gbench.
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4. Results and discussion

4.1. Spatial stability of SVM models

To show the merit of the proposed MM-SVMmodel (M-SVM incor-
porated withMTL), the results of S-SVM andMM-SVMmodels in train-
ing stages at the horizon of t + 4 shown in Fig. 3 are assessed. It
indicates that the error function values of the MM-SVM model are
smaller than those of the S-SVM models, where a sharp drop occurs
around the 200th generation. The reason is that the MM-SVM model
utilizes more weight parameters to fit the potentially non-linear inter-
relationships of air quality among five PM2.5 monitoring stations,
which reduces error accumulation and propagation during modelling.
It is noted that the error function values of the MM-SVM model show
a significant decreasing trend with less fluctuation, which implies the
S-SVM would easily trigger forecast instability. These results clearly
show that the proposed MM-SVM model can overcome the instability
shortcomings caused by multiple independent S-SVM models for re-
gional multi-step-ahead PM2.5 forecasting.

In addition, we test the spatial stability of these constructedmodels.
Fig. 4 shows the performance of S-SVM and MM-SVM models for re-
gional and site-specific multi-step-ahead PM2.5 forecasts at horizons t
+ 1 up to t + 4 at five monitoring stations in Taipei City, respectively,
which clearly demonstrates the following findings.

1) The S-SVMmodel produces anunstable and inferior performance for
PM2.5 forecasting in thewhole study region (Taipei City) and at each
five air quality monitoring stations. It indicates that the S-SVM
model cannot provide a stable and precise regional multi-step-
ahead forecast results whenmultiple independent S-SVM is individ-
ually constructed.

2) The MM-SVM model has the best forecast performance not only at
individual air quality monitoring station but also for the whole re-
gion (Taipei City), in terms of RMSE and Gbench values. It demon-
strates that the proposed MM-SVM model that adequately
considers underlying non-linear spatial relationships among five
PM2.5 monitoring stations can effectively adjust synaptic weights
to provide reliable and accurate regional multi-step-ahead PM2.5

forecasts.
3) TheMM-SVMmodel has the best testingperformance of all the cases

in terms of RMSE and Gbench values. It appears that the MM-SVM
model produces much higher Gbench values but much smaller
Fig. 3. Error function values of S-SVM andMM-SVMmodels in training stages at horizon t
+ 4 (the error function is the Mean Squared Error with normalized dataset). The MSE of
the S-SVM model is the mean value of the MSE of five independent S-SVM models
corresponding to five air quality monitoring stations in Taipei City. TheMM-SVM denotes
the hybrid of the multi-output SVM and the multi-task learning.
RMSE values than the S-SVM model in both training and testing
stages. It is noted that the RMSE (Gbench) values of the S-SVM
model significantly increase (decrease) in both stages at time steps
t + 2 up to t + 4 while those of the MM-SVM model remain rela-
tively stable. The MM-SVM model also has the best performance at
all stations according to RMSE values. For traffic stations (A1 and
A2), the performance of the MM-SVM model is significantly better
than that of the S-SVM model, whereas the performance of MM-
SVM and S-SVM models makes less difference at general and park
stations (A3, A4 and A5). As shown in Table 3, taking horizon t + 4
for example, the improvement rates in terms of Gbench and RMSE
values reach 22.39% and 38.43% at Station A1, respectively, but re-
main only 4.52% and 13.22% at Station A3, respectively. In addition,
it is an interesting finding that the improvement rates in terms of
Gbench and RMSE values significantly increase overtime from t + 2
to t + 4 at all stations. In other words, the proposed MM-SVM
model is able to produce more stable and precise multi-step-ahead
forecasts by identifying the heterogeneities of different air quality
monitoring stations. The reason is that the correlation between traf-
fic stations not only stems from traffic volumes but also stems from
meteorological factors (e.g. rainfall and wind speed), while the cor-
relation between general stations only stems from meteorological
factors in the perspective of spatial relationship. The Kendall tau cor-
relation for PM2.5 between traffic stations (coefficient = 0.87) is
stronger than that between the other stations (average coefficient
= 0.73). Therefore, the MM-SVM model produces superior perfor-
mance at traffic stations than the other stations. The results indicate
that the multi-output model does provide valuable information for
regional PM2.5 forecasting.

From the perspective of spatial stability, the MM-SVMmodel is very
beneficial to regional air quality forecasting since the proposed multi-
output data-driven model not only can enhance model reliability and
accuracy but also can provide smarter applications than the single-
output data-driven model for regional multi-step-ahead air quality
forecasts.

4.2. Temporal stability of SVM models

Next, we evaluate the temporal stability of these constructed
models. Taking the indicator RMSE for example, Fig. 5 presents the test-
ing performance between the S-SVM models and the MM-SVM model
for regional PM2.5 forecasts in four seasons. For a regional scale (Taipei
City), the MM-SVMmodel shows superior performance in four seasons
according to RMSE values. It is noted that the performance of the M-
SVM is significantly better than that of the S-SVM in summer and au-
tumn, while the performance between MM-SVM and S-SVMmodels is
less distinct in spring and winter. The reason is that the meteorological
relationship in summer and autumn (average Kendall tau coefficient for
meteorological factors = 0.75) is stronger than that in spring and win-
ter (average Kendall tau coefficient for meteorological factors = 0.62).
Therefore, the stronger correlation between air-quality monitoring sta-
tions is the trigger for enhancing the performance of the MM-SVM
model. In short, these findings are also very beneficial to the data-
driven modeler because an independent model is not essential for
each season, in terms of temporal stability comparison between S-
SVM and MM-SVM models.

From a statistical standpoint, data-driven models could identify and
learn input-output patterns based on a majority (N75%) of observations
(i.e. above the lower quartile) while a common technical bottleneck
would occur in most of the data-drivenmodels, whichmeans it is easily
inclined to systematically underpredict particulate matter concentra-
tions at the occasions of very high concentrations (higher than the
value of theupper quartile), especially for themaximal PM2.5 concentra-
tion events (Li et al., 2016; Lv et al., 2016; Nieto et al., 2018). As a conse-
quent, we select the maximal PM2.5 events corresponding to the three

Image of Fig. 3


Fig. 4.Model performance in testing stages of the S-SVM and MM-SVM for regional and site-specific multi-step-ahead PM2.5 forecasts at horizons from t + 1 to t + 4 at five monitoring
stations in Taipei City, respectively. The MM-SVM denotes the hybrid of the multi-output SVM and the multi-task learning.
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kinds of air-quality monitoring stations in the testing stage to test the
performance of the two models. Finally, to clearly distinguish the fore-
cast ability of S-SVM and MM-SVM models, three PM2.5 events at
three monitoring stations (traffic station A1 with maximal PM2.5 con-
centration exceeding 250 μg/m3; general station A3 with maximal
PM2.5 concentration exceeding 200 μg/m3; and park station A5 with
maximal PM2.5 concentration exceeding 100 μg/m3) are selected to
test both models through assessing the goodness-of-fit between obser-
vations and forecasts at horizon t + 4, as shown in Fig. 6. It reveals that
the MM-SVM model is able to well forecast multi-step-ahead PM2.5,

Image of Fig. 4


Table 3
Improvement rates of two indicators (Gbench and RMSE) in the testing stages of themulti-
step-ahead PM2.5 forecasting models (theMM-SVMmodel in comparisonwith the S-SVM
models).

Station name Horizon Improvement ratea (%)

Gbench RMSE

A1 t + 1 2.17 8.16
t + 2 13.41 16.81
t + 3 16.00 31.46
t + 4 22.39 38.43

A2 t + 1 3.19 8.16
t + 2 11.39 17.61
t + 3 12.05 30.78
t + 4 15.28 39.04

A3 t + 1 2.20 10.08
t + 2 2.35 11.52
t + 3 2.70 12.11
t + 4 4.41 13.25

A4 t + 1 1.89 12.78
t + 2 1.94 12.87
t + 3 2.70 13.22
t + 4 4.52 13.22

A5 t + 1 1.99 12.96
t + 2 2.46 13.07
t + 3 2.91 13.24
t + 4 4.62 13.39

Regional t + 1 2.29 10.43
t + 2 6.31 14.38
t + 3 7.27 20.16
t + 4 10.24 23.47

a Improvement rate of Gbench ¼ ðGbenchfMMSVMg−GbenchfSSVMgÞ
GbenchfSSVMg � 100%

Improvement rate of RMSE ¼ ðRMSEfSSVMg−RMSEfMMSVMgÞ
RMSEfSSVMg � 100%.
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whereas the S-SVM model has significant time-lag phenomena as well
as larger gaps between observations and forecasts, where the forecast
precision significantly decreases at horizon t + 4. It appears that the
MM-SVM model is able to trace the trails of PM2.5 events, significantly
mitigate time-lag effects, as well as produce much accurate and reliable
Fig. 5. Seasonal performance (RMSE (μg/m3)) in the testing stage of the S-SVM and MM-
SVMmodels for regional PM2.5 forecasts at horizons from t+ 1 to t + 4 in Taipei City. The
MM-SVM denotes the hybrid of the multi-output SVM and the multi-task learning.
multi-step-ahead forecasts. In addition, from the standpoint of forecast
accuracy, we have two importantfindings. The first finding is that the S-
SVM model has better performance at the general station A3 and the
park station A5 than at the traffic station A1. The second finding is
that the MM-SVM model not only can perform as well as the S-SVM
model at the general station A3 and the park station A5 but also can sig-
nificantly enhance the forecast accuracy of PM2.5 concentrations at the
traffic station A1. That is to say, the influences of primary emission
associated with meteorological conditions (e.g., general station A3) on
MM-SVMand S-SVMmodels is insignificantwhile the influences of sec-
ondary emission associated with meteorological conditions (e.g., traffic
station A1) on MM-SVM and S-SVM models make a significant differ-
ence. The reasons why the MM-SVM model outperforms the S-SVM
model are that: (1) the standard S-SVM cannot cope with the multi-
output case. In addition, the traditional parameter optimization proce-
dure (e.g., conjugate gradient algorithm) of the SVM individually trains
each of the multiple independent S-SVM models for learning each
parameter, which could only extract the underlying non-linear correla-
tion among multi-input variables, and thus disregards the potentially
non-linear cross relatedness among different outputs; and (2) the
MM-SVM model not only could reserve the excellent capability of the
S-SVMmodel but also could be advantageous to learn all outputs simul-
taneously aswell as contribute this correlation tomulti-task learning by
means of the positive real regularized parameter (λ) of mean weight.

From the standpoint of air-pollutant mechanisms, we further ex-
plore the reasons why the S-SVM andMM-SVMmodels produce differ-
ent performances at traffic, general and park stations. In Taipei Citywith
fast urban development, regional air quality frequently interacts with
intensive human activities, traffic loads and commercial trading. From
the perspective of monitoring functions and spatial distribution, the
five air quality monitoring stations are typical and representative for re-
gional air quality of Taipei City. As known, a high PM2.5 event is usually
associated with secondary processes either from regional transporta-
tion of aged secondary aerosol or secondary transformation of gaseous
pollutants, while a PM2.5 event driven by primary or natural processes
would be expected to correlate with local weather conditions and pri-
mary emissions (Witkowska and Lewandowska, 2016; Berardis and
Eleonora, 2017; Zhang et al., 2018). From the perspective of the S-
SVM model, it produces better performance (higher Gbench values and
lower RMSE values, see Fig. 4) at the general stations (A3 & A4) and
the park station (A5) than at traffic stations (A1 & A2). From the per-
spective of the MM-SVM model in comparison with the S-SVM model,
the MM-SVM model gains better improvement rates of Gbench and
RMSE (see Table 3) at traffic stations (A1 & A2) than at the park station
(A5) and general stations (A3 & A4). That is to say, the MM-SVMmodel
not only could greatly improve the forecast accuracy of PM2.5 concentra-
tions at traffic stations representative of secondary processes by captur-
ing the correlation in regional transportation of aged secondary aerosol
but also could perform as well as the S-SVM model at general stations
representative of primary processes and the park station representative
of natural processes.

The developedMM-SVMmodel can be appliednot only tomodelling
the heterogeneities in different types of air pollutant-generating mech-
anisms (e.g. primary mechanism, secondary mechanism and nature
situation) but also to mapping the heterogeneities of air pollutant
onto different seasons by utilizing mean weight with the positive real
regularized parameter for fitting the potentially non-linear inter-
relationships among PM2.5 monitoring stations. In practice, the
proposed MM-SVM model for simultaneously making regional PM2.5

forecasts could be affected by missing data because the probability of
missing a datum would be much higher in a group of monitoring sta-
tions than in a single station. Thismissing data problem in the real appli-
cation could be solved by filling the missing data fields with the
previously observed data and/ormodel output data,with the data inter-
polated from nearby monitoring stations, or with the estimates using
other more sophisticated methods to increase model reliability. In this

Image of Fig. 5
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Fig. 6.Multi-step-ahead PM2.5 forecast results of S-SVM and MM-SVMmodels in the testing stages at horizon t + 4 at the traffic Station A1 (Yonghe), the general Station A3 (Songshan)
and the park station A5 (Yangming), respectively. TheMM-SVMdenotes the hybrid of themulti-output SVMand themulti-task learning. The test eventwithmaximal PM2.5 concentration
exceeding 250 μg/m3 occurred at the traffic Station A1. The test event with maximal PM2.5 concentration exceeding 200 μg/m3 occurred at the general Station A3. The test event with
maximal PM2.5 concentration exceeding 100 μg/m3 occurred at the park Station A5.
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study, we focus on exploring the proposed MM-SVM model for effec-
tively increasing the accuracy of regional multi-step-ahead forecasts
through tackling error accumulation and propagation that is commonly
encountered in regional forecasting. The proposedmodel is a static one,
and the datasets used for model training and testing are historical data
without any missing data. Additionally, the accuracy, robustness and
uncertainty of the investigativemodels are considered as threemain re-
search interests in the domain of air-quality forecasting. In our future
study, we would pay attention to addressing the robustness and uncer-
tainty of multi-step-ahead air-quality forecast models.
5. Conclusion

This research is motivated by the wide concern raised in recent
years, namely the increase of frequency and intensity of extreme air
quality events caused by climate change as well as human activities,
along with population boosting and urban development. Accurate and
reliable multi-step-ahead air quality forecasts are very crucial and ben-
eficial tomitigate health risks caused by outdoor activities. In this study,
a multi-output SVM incorporated with a multi-task learning algorithm
(MM-SVM) was explored for the first time to make regional multi-
step-ahead PM2.5 forecasts. Its capability of efficient learning and accu-
rate forecasting was tested and verified at five air quality monitoring
stations in Taipei City. The single-output SVM constructed
independently for individual air quality monitoring station was imple-
mented for comparative analysis.

The results of regional PM2.5 forecasts demonstrated that the pro-
posed MM-SVM model performed more prominently than the S-SVM
model in multi-step-ahead forecasting for all the cases, in terms of
RMSE and Gbench. It showed that the MM-SVM model that adequately
takes underlying non-linear spatial relationships among five PM2.5

monitoring stations could effectively adjust synaptic weights and thus
the model could provide reliable and accurate regional multi-step-
ahead PM2.5 forecasts. When assessing the regional PM2.5 forecast
models established for Taipei City, the proposed MM-SVM model
could significantly mitigate time-lag phenomena. The S-SVM model,
however, failed to achieve satisfactory forecast results in both training
and testing stages, which implied the SVM demanded for more
sophisticated techniques, such as the multi-task learning algorithm
under a multi-output architecture, to enhance model stability and gen-
eralizability in spatiotemporal scales. The developed MM-SVM model
can effectively model the heterogeneities in different types of air
pollutant-generatingmechanisms (e.g., primarymechanism, secondary
mechanism and nature situation) as well as can map the heterogene-
ities of air pollutant in different seasons to fitting the potentially non-
linear inter-relationships among different air quality monitoring
stations.We demonstrate the developedMM-SVMmodel can be topical
and timely for regional air quality forecasting and early warning tomit-
igate human health risks, coinciding with the Green Urbanization
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Development Pathway promoted by governmental administrations and
stakeholders to adapt to fast-changing conditions by considering the re-
lationships and feedbacks between natural and human-induced envi-
ronmental changes.
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