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H I G H L I G H T S

• Propose successive approximation to solve curse of dimensionality raised in NSGA-II.

• NSGA-II with successive approximation optimizes 21 mega-reservoirs’ joint operation.

• Lift synergy of hydropower output, flood control, water supply and CO2 mitigation.

A R T I C L E I N F O

Keywords:
Hydropower output
Multi-objective optimization
Artificial Intelligence (AI)
Non-Dominated Sorting Genetic Algorithm-II
(NSGA-II)
Cascade reservoirs
Yangtze River

A B S T R A C T

The high complexity of multi-objective joint reservoir operation imposes challenging barriers to the pursuit of
optimal hydroelectricity output. Inasmuch as multi-objective evolution optimization algorithms, including the
Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), are trapped in the curse of dimensionality which could
not be effectively solved the multi-objective operation of more than ten reservoirs. This study proposes a
methodology that integrate the NSGA-II with a successive approximation approach to optimize the hydropower
output for conquering the curse of dimensionality under the joint operation of 21 mega cascade reservoirs located in the
Upper Yangtze River Basin of China. The successive approximation approach could effectively decompose the
mutually related M-dimensional problem into M individual one-dimensional problems, which ingeniously
overcomes the curse of dimensionality. The proposed model is anchored with strategies of advancing im-
poundment timings and raising water levels of cascade reservoirs. We show that our methodology, without
adding or upgrading hydraulic infrastructures, empowers the joint operation to reach 110.79 billion kW·h/year
(9.8% improvement) in hydropower output, which could reduce 86.97 billion kg/year in CO2 emission, and to
provide 44.97 billion m3/year in water supply with flood risk less than 0.016. The results suggest that our
methodology can spur hydroelectricity output to support China’s tactics in fulfilling the pledge of carbon
emission reduction and non-fossil energy expansion to 20% by 2030.

1. Introduction

In consequence of high-speed economic growth and modern society
development, China has become a big energy consumer yet a largish
carbon dioxide (CO2) emitting country in the world. China has greatly
endeavored to make transit-oriented development of renewable energy
systems for fulfilling the pledge of carbon emission reduction and non-
fossil energy expansion to 20% by 2030 or earlier [1,2]. Thermal
power, hydropower, wind power and nuclear power are the main
power sources in China [3], and the annual output of each power
source, as well as the ratio of individual output to the total output of the

composition of these four energy sources during 2000 and 2015, are
shown in Fig. 1(a). Although thermal power dominated the energy
structure in China, its share showed a decreasing trend from 2000
(85.22%) to 2015 (74.24%). On the other hand, hydropower occupied
over 19% of energy production in 2015, with a prominent increasing
trend from 2000 (13.41%) to 2015 (19.59%). It appears that hydro-
power takes the lead in renewable electricity generation technology
worldwide. From the perspectives of integrative operation between
different renewable energies [4,5] and water resources management
[6], hydropower, technically, can be commercially developed on a large
scale in China at present [7]. With flexibility in electricity production
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and supply, hydropower development brings substantial benefits to
energy economy [8,9], energy safety [10], climate change mitigation
[11,12] and GHG emission reduction [13,14].

The installed hydropower capacity of China reached 320 GW by the
end of 2016, which was attributed to the fast development of hydro-
power resources and the intensive construction of power grids during
the past three decades [15]. Delivering an annual hydropower output of
1130 billion kWh, China ranked first with a share of 32% in global
hydropower generation by 2016 [16]. Hydropower resources are con-
centrated mainly in south-western China while electricity loads occur
mainly around the Yangtze River Delta and the Pearl River Delta [17].
With a total length of 6300 km and terrain elevation ranging between
10m and 7213m, the Yangtze River has an average annual runoff of
995.8 billion m3 and a drainage area of 1.80 million km2. Being cred-
ited to the merits in nature, the Yangtze River Basin possesses the lar-
gest water and hydropower resources in China. A total of 249 mega
reservoirs (reservoir capacity ≥100 million m3) and 1327 medium-
scale reservoirs (10 million m3≤ reservoir capacity < 100 million m3)
accompanied with hydropower plants were built and operated in this
basin during the last two decades, and their total hydropower output
accounted for over 30% of the installed hydropower capacity in China
[18]. To date, the number of reservoirs for joint operation during flood
seasons is usually less than ten [15–17]. The management of cascade
reservoir operation in consideration of multiple perspectives is highly
complex and usually involves multi-objective [19], large-scale, trans-

basin [20], trans-province, and trans-region issues [21,22]. Major bar-
riers also lie in the high dimensionality of the whole system and the
very large number of variables required for modelling joint operation
[22]. Concerns also arise on the costly and time-consuming construc-
tion of new dams and/or hydropower plants. Besides, environmental
impact assessment may prohibit such construction. Therefore, it is es-
sential to conduct in-depth research with state-of-the-art techniques to
conquer challenges encountered in such awkward situation of join
cascade reservoir operation for effectively promoting the synergies
among hydropower generation, flood control, water utilization and CO2

emission reduction.
Due to the complexity of the joint operation of cascade reservoirs,

plenty of optimization algorithms involving mathematical program-
ming methods and artificial intelligence algorithms have been in-
troduced and applied to reservoir operation and management. The
mathematical programming methods, for instance non-linear pro-
gramming (NLP), dynamic programming (DP) and stochastic dynamic
programming (SDP), are storage-consuming and computationally in-
efficient. These bottlenecks caused by high-dimensionality are partially
overcome by some approximation algorithms based on DP, such as
progressive optimality algorithm (POA) [23] and dynamic program-
ming successive approximation (DPSA) [24–26]. However, on the
whole, these methods with inherent drawbacks have been primarily
applied to single-objective optimization operation of cascade reservoirs
because the curse of dimensionality has not been totally solved. Also,

Nomenclature

Abbreviations

AI artificial intelligence
CDR carbon dioxide (CO2) reduction
FR flood risk
GHG greenhouse gas
HO hydropower output
IE impoundment efficiency
NSGA-II non-dominated sorting genetic algorithm-II
PGR power generation risk
SOP standard operation policy
TGR three gorges reservoir
WS water supply
WUB whole upper Yangtze river basin

Indices

i index of reservoirs, from 1 to M
t index of time, from 1 to T·N

Parameters

E(CO2) CO2 equivalency for hydropower generation
g gravity acceleration
Gmax maximal generation in NSGA-II
M number of reservoirs
η dimensionless efficiency coefficient of the installation
N number of years
Npop population size in NSGA-II
ρ density of water
Pc crossover probability in NSGA-II
Pm mutation probability in NSGA-II
Pi

min minimum power output of the ith reservoir
Pi

max maximum power output of the ith reservoir
Ri

min minimum of water release of the ith reservoir
Ri

max maximum of water release of the ith reservoir

SIi storage corresponding to top of inactive pool in the ith
reservoir

SSi storage corresponding to seasonal top of buffer pool in the
ith reservoir

SNi storage corresponding to top of conservation pool in ith
reservoir

tΔ time step
T number of time-steps in a year
Wi

min minimum water level of the ith reservoir
Wi

max maximum water level of the ith reservoir

Variables

CDRi CO2 reduction for hydropower generation in the ith re-
servoir

tFR( ) flood risk at the tth time
FRi(t) flood risk of the ith reservoir at the tth time

tH ( )i head difference between the turbine intake and the last
tank of the ith reservoir at the tth time

HOi hydropower output of the ith reservoir
Ii(t) inflow of the ith reservoir at the tth time
IEi impoundment efficiency of the ith reservoir

+tIF ( 1)i stream flow of intermediate catchment between the i-1th
reservoir and the ith reservoir at the t+1th time

tP ( )i hydropower output of the ith reservoir at tth time
tPGR( ) power generation risk at the tth time
tPGR ( )i power generation risk of the ith reservoir at the tth time

Ri(t) water release of the ith reservoir at the tth time
RTi(t) water release through turbine of the ith reservoir at the tth

time
RSi(t) water release through spillway of the ith reservoir at the

tth time
tS ( )i storage of the ith reservoir at the tth time
jSF ( )i final storage of the ith reservoir in the jth year

Wi(t) water level of the ith reservoir at the tth time
WSi water supply of the ith reservoir
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Fig. 1. Statistics of main power sources in China and the investigative area of this study. a. Annual power output (APO) and the ratio of individual power output to
the total output of the four types of energy in China during 2000 and 2015 are presented, respectively. b. Spatial distribution of 21 cascade reservoirs in the Upper
Yangtze River Basin.
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there still are limitations arising from the complex simulation models in
the form of spatial-temporal hydraulic and electricity connections be-
tween high-dimensional cascade reservoirs. Artificial intelligence al-
gorithms, such as genetic algorithm (GA), non-dominated sorting ge-
netic algorithm-II (NSGA-II), particle swarm optimization (PSO), multi-
objective particle swarm optimization (MOPSO), differential evolution
(DE) and multi-objective differential evolution (MODE) algorithm, can
be adequately integrated with simulation models to significantly lift the
performance of single-objective and multi-objective optimization op-
eration, respectively. However, their applicability is somewhat limited
by computational difficulties that arise in high-dimensional problems.
For instance, the number of cascade reservoirs in single-objective op-
timization using GA [27], PSO [28] and DE [29] is less than ten while
the number of cascade reservoirs in multi-objective optimization using
NSGA-II [30,31], MOPSO [32] and MODE [33] is less than five. In-
asmuch as multi-objective evolution optimization algorithms, including
the standard NSGA-II proposed by Deb et al. [34], are trapped in the
curse of dimensionality, where global optimum is difficult to obtain. It

is highly challenging and complex to model and/or optimize the joint
operation of more than ten reservoirs [22,35]. Hence, to pinpoint the
current and prospective mega cascade reservoir systems (more than ten
cascade reservoirs), the key scientific measure to tackle such high-di-
mensional problems is to propose an effective and efficient optimization
method so as to address multi-objective optimization and curse of di-
mensionality. To obtain the solution of a high-dimensional cascade
reservoir optimization model, a novel methodology that integrates an
evolutionary algorithm with successive approximation is presented in
this study based on the nature of the standard NSGA-II and a successive
approximation approach.

This study was explored with two main foci: proposing two pre-set
strategies that advance impoundment operation timing and lift re-
servoir water level for multi-objective impoundment operation of cas-
cade reservoirs; and fusing the non-dominated sorting genetic algo-
rithm-II (NSGA-II) with a successive approximation approach for coping
with the curse of dimensionality caused by high dimensionality and a
great number of variables required for modelling the joint operation of
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Fig. 2. Operation curves of reservoir impound-
ment. SOP denotes the standard operation
policy; TBP denotes the top of buffer pool; and
RWL denotes the reservoir water level. The 21
cascade reservoirs are located in six regions
(A–F) of the Upper Yangtze River Basin.
Reservoirs in each region: Region A: Reservoirs
LY (Li-Yuan); AH (A-Hai); JAQ (Jin-An-Qiao);
LKK (Long-Kai-Kou); LDL (Lu-Di-La); and GYY
(Guan-Yin-Yan); Region B: Reservoirs JP (Jin-
Ping); and ET (Er-Tan); Region C: Reservoirs
ZPP (Zi-Ping-Pu); and PBG (Pu-Bu-Gou); Region
D: Reservoirs BK (Bi-Kou); BZS (Bao-Zhu-Si);
TZK (Ting-Zi-Kou); and CJ (Cao-Jie); Region E:
Reservoirs GPT (Gou-Pi-Tan); SL (Si-Lin, ST); ST
(Sha-Tuo) and PS (Peng-Shui); Region F:
Reservoirs XLD (Xi-Luo-Du); XJB (Xiang-Jia-
Ba); and TGR (Three Gorges Reservoir, the lar-
gest reservoir in the world to date).

Y. Zhou et al. Applied Energy 228 (2018) 1726–1739

1729



mega cascade reservoirs. In this study we, under current hydraulic in-
frastructures, propose to model this highly complex issue for sig-
nificantly spurring hydroelectricity output in consideration of water
utilization efficiency, flood control and CO2 emission mitigation. These
issues were examined via a detailed case study on the 21 mega cascade
reservoir in the Upper Yangtze River Basin of China (Fig. 1(b)). The
remainder of the study is structured as follows: Section 2 introduces the
study area and materials; Section 3 presents the methods used in the
analysis; Section 4 presents and discusses the results; and conclusions
are then drawn in Section 5.

2. Study area and materials

The Yangtze River (i.e., Chang-Jiang) is the longest river in China,
and many farm lands and industrial areas are located along the river.
Due to complex mountainous topography and subtropical climate,
floods are commonly induced by heavy rainfalls (200–800mm) within
24 h in the Yangtze River Basin, and thus cause high flood risks. A series
of large reservoirs are located in this basin for multiple purposes in
recent decades. Among them, the Three Gorges Reservoir (TGR) is the
largest reservoir in the world and implements the largest hydroelectric
project to date, which not only can generate approximately 22.50 GW
(GW) of hydropower (i.e. installed capacity) but also protect millions of
downstream residents from flood hazards. To promote water resources
utilization and renewable hydropower generation, 21 mega cascade
reservoirs in the Upper Yangtze River Basin (Fig. 1(b)) have operated
jointly to achieve a total reservoir storage of 109.76 billion m3 (34.2
billion m3 for flood control) and a total installed hydropower capacity
of 78.65 GW.

In Fig. 2, the current rules (i.e. the standard operation policy (SOP))
for the joint operation of 21 cascade reservoirs consist of: (1) the re-
servoir storage level would be linearly raised from the annual top of
buffer pool at the starting time of impoundment to the top of con-
servation pool at the end of flood seasons; (2) the initial impoundment
operation would be activated no earlier than August 1st (Table 1); and
(3) the operation of cascade reservoirs should be implemented between
August 1st and October 31st according to geological distributions of
reservoirs along the Yangtze River (e.g. reservoirs in Region D start on
August 1st, but reservoirs in Region E start on September 1st, see
Table 1) [36]. Data applied in this study consist of a total of 119,784
datasets (=21 reservoirs ∗ 92 days ∗ 62 years) collected in flood seasons
(August 1st - October 31st, 92 days) during 1955 and 2016 (62 years).

3. Methods

Because the intrinsic nature of hydrology is nonlinear and un-
certain, a linear operation curve like the Standard Operation Policy
(SOP, see Fig. 3(a)) used in China may not satisfactorily compromise
the risks between flood control and hydropower generation. We intend
to solve this problem, and the research flowchart of this study is shown
in Fig. 3. We first propose two pre-set operation strategies to aptly
construct the constraints of reservoir water level for impoundment
operation (Fig. 3(a)). Then, the non-dominated sorting genetic algo-
rithm-II (NSGA-II) with successive approximation approach is devel-
oped to search the optimal multi-objective impoundment operation of
21 cascade reservoirs. The Pareto frontiers obtained from the NSGA-II
are generated to reflect the trade-off risks of flood control and hydro-
power generation. The details of the methods used in this study are

Table 1
Impoundment timings, water levels and basic statistics of 21 cascade reservoirs in the six regions (A–F) of the Upper Yangtze River Basin (WUB).

Region Reservoira Initial reservoir
impoundment timing

Final reservoir
impoundment timing

Annual top of
buffer poolc

Top of
conservation pool

Total storage
capacity

Storage capacity
for flood control

Installed
hydropower
capacity

(SOPb) (NSGA-II) (SOP, NSGA-II) (m) (m) (Billion m3) (Billion m3) (GW)

Region Af

(Jin-Sha
River)

(A1) LY Aug. 1st *d Aug.1st Sep. 30th 1605 1618 0.81 0.17 2.40
(A2) AH Aug. 1st *Aug.1st Sep. 30th 1493.3 1504 0.89 0.22 2.00
(A3) JAQ Aug. 1st *Aug.1st Sep. 30th 1410 1418 0.91 0.16 2.40
(A4) LKK Aug. 1st *Aug.1st Sep. 30th 1289 1298 0.56 0.13 1.80
(A5) LDL Aug. 1st *Aug.1st Sep. 30th 1212 1223 1.72 0.56 2.16
(A6) GYY Oct. 1st #e Sep.10th Oct. 31st 1128.8 1134 2.25 0.25 3.00

Region B (Ya-
Long
River)

(B1) JP Aug. 1st *Aug.1st Sep. 30th 1859 1880 7.99 1.60 3.60
(B2) ET Aug. 1st *Aug.1st Sep. 30th 1190 1200 5.80 0.90 3.30

Region C (Min
River)

(C1) ZPP Oct. 1st #Sep.10th Oct. 31st 850 877 1.11 0.17 0.76
(C2) PBG Oct. 1st #Sep.10th Oct. 31st 841 850 5.33 0.73 3.60

Region D (Jia-
Ling
River)

(D1) BK Oct. 1st #Sep.10th Oct. 31st 695 704 0.22 0.10 0.30
(D2) BZS Oct. 1st #Sep.10th Oct. 31st 583 588 2.55 0.28 0.70
(D3) TZK Sep. 1st #Aug. 20th Sep. 30th 447 458 4.07 1.44 1.10
(D4) CJ Sep. 1st #Aug. 20th Sep. 30th 200 203 2.22 0.20 0.50

Region E (Wu
River)

(E1) GPT Sep. 1st #Aug. 20th Sep. 30th 628.1 630 6.45 0.20 3.00
(E2) SL Sep. 1st #Aug. 20th Sep. 30th 435 440 1.59 0.18 1.05
(E3) ST Sep. 1st #Aug. 20th Sep. 30th 357 365 0.92 0.21 1.12
(E4) PS Sep. 1st #Aug. 20th Sep. 30th 287 293 1.47 0.23 1.75

Region F
(XLD-XJB-
TGR)

(F1) XLD Sep. 1st #Aug. 25th Sep. 30th 560 600 12.67 4.65 13.86
(F2) XJB Sep. 10th #Aug. 25th Sep. 30th 370 380 5.16 0.90 7.75
(F3) TGR Sep. 10th #Aug. 25th Oct. 31st 145 175 45.07 22.15 22.50

a Operation period starting from 1st of August to 31st of October.
b Standard operation policy.
c Set as the initial reservoir water level in reservoir operation.
d Implement the strategy of raising reservoir water level.
e Implement the strategies of advancing reservoir impoundment timing and raising reservoir water level.
f Reservoirs of each region: Region A: Reservoirs LY (Li-Yuan); AH (A-Hai); JAQ (Jin-An-Qiao); LKK (Long-Kai-Kou); LDL (Lu-Di-La); and GYY (Guan-Yin-Yan);

Region B: Reservoirs JP (Jin-Ping); and ET (Er-Tan); Region C: Reservoirs ZPP (Zi-Ping-Pu); and PBG (Pu-Bu-Gou); Region D: Reservoirs BK (Bi-Kou); BZS (Bao-Zhu-
Si); TZK (Ting-Zi-Kou); and CJ (Cao-Jie); Region E: Reservoirs GPT (Gou-Pi-Tan); SL (Si-Lin, ST); ST (Sha-Tuo); and PS (Peng-Shui); Region F: Reservoirs XLD (Xi-Luo-
Du); XJB (Xiang-Jia-Ba); and TGR (Three Gorges Reservoir, the largest reservoir in the world to date).
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given as follows. 3.1. Multi-objective joint operation of cascade reservoirs

The multi-objective joint operation of cascade reservoirs is modelled
with the aim of synergistically minimizing the trade-offs in risks

Fig. 3. Solutions to reservoir impoundment operation. (a) Successive approximation approach. (b) Non-dominated sorting algorithm-II (NSGA-II). (c) Two strategies
for reservoir impoundment operation. FR denotes flood risk; PGR denotes hydropower generation risk; SOP denotes the standard operation policy; the top of buffer
pool is set as the initial reservoir water level; and the reservoir impoundment operation curve is divided into three zones (I, II and III) by reservoir parameters (i.e.
annual top of buffer pool, seasonal top of buffer pool, top of conservation pool, SOP operation curve, as well as initial and final timings of reservoir impoundment
operation).
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between flood control and hydropower generation of the river-basin
system. The flood risk (FR) is formulated by the ratio of flood control
capacity loss to total flood control capacity. The power generation risk
(PGR) is estimated by the ratio of hydropower generation shortage
(occurs when power output is less than installed power output) to po-
tential power generation amount, because the power output of a hy-
draulic turbine is restrained between guaranteed (minimum) power
output and installed (maximum) power output [40]. A sketch of the
variables used to define objective functions and constraints is presented
in Fig. 4. The multi-objective optimization model is formulated as fol-
lows:

3.1.1. Objective functions

Objective 1: minimizing flood risk

= < ⩽t tFR min{max{FR( )}}, (0 T·N) (1a)

=
∑ −

∑ −
=

=

t
t

FR( )
(S ( ) SS )

(SN SS )
i i i

i i i

1
M

1
M

(1b)

= −
−

t tFR ( ) S ( ) SS
SN SSi
i i

i i (1c)

where FR is the flood risk; FR(t) is the flood risk at the tth time; FRi(t) is
the flood risk of the ith reservoir at the tth time; T is the number of time-
steps in a year; N is the number of years; M is the number of reservoirs;
Si(t) is the storage of the ith reservoir at the tth time; SSi is the storage
corresponding to the seasonal top of buffer pool in the ith reservoir; and
SNi is the storage corresponding to the top of conservation pool in the
ith reservoir.

Objective 2: minimizing power generation risk (i.e. maximizing
hydropower output)

= < ⩽t tPGR min{max{PGR( )}}, (0 T·N) (2a)

=
∑ −

∑ −
=

=

t
t

PGR( )
(P P ( ))

(P P )
i i i

i i i

1
M max

1
M max min (2b)

=
−
−

t
t

PGR ( )
P P ( )
P Pi

i i

i i

max

max min (2c)

where PGR is the hydropower generation risk; PGR(t) is the hydro-
power generation risk at the tth time; PGRi(t) is the hydropower gen-
eration risk of the ith reservoir at the tth time; tP ( )i is the hydropower
output of the ith reservoir at tth time; Pi

max is the maximum hydropower
output of the ith reservoir; and Pi

min is the minimum hydropower output
of the ith reservoir.

3.1.2. Constraints
Reservoir operation should obey physical constraints, such as the

water balance equation, the hydraulic connection equation, the feasible
boundary of water release, hydropower output and the reservoir water
level. The mathematical formulations of these constraints are given as
follows.

+ = + ⎛
⎝

+ + − + + ⎞
⎠

t t t I t t R tS ( 1) S ( ) I ( 1) ( )
2

R ( 1) ( )
2

·Δti i
i i i i

(3)

+ = + + +−t tI ( 1) R ( 1) IF ( t 1)i i i1 (4)

= +t tR ( ) RT ( ) RSi i i (5a)

⩽ ⩽tR R ( ) Ri i i
min max (5b)

Fig. 4. Sketch of the variables used to define objective functions and constraints.
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=t t tP ( ) η·ρ·g·RT ( )·H ( )i i i (6a)

⩽ ⩽tP P ( ) Pi i i
min max (6b)

⩽ ⩽tW W( ) Wi
min

i i
max (7)

where Ii(t) and Ri(t) are the inflow and water release of the ith reservoir
at the tth time, respectively. +tIF ( 1)i is the stream flow of the inter-
mediate catchment between the i-1th reservoir and the ith reservoir at
the t+1th time. RTi(t) and RSi(t) are the water release through turbine
and spillway of the ith reservoir at the tth time, respectively. Ri

min and
Ri

max are the minimum and maximum of water release of the ith re-
servoir, respectively. Pi(t) is the output power of the ith reservoir at the
tth time. η is the dimensionless efficiency coefficient of the installation.
ρ is the density of water. g is the gravity acceleration. tH ( )i is the head
difference between the turbine intake and the last tank of the ith re-
servoir at the tth time. Pi

min and Pi
max are the minimum and maximum

power output of the ith reservoir, respectively. Wi(t) is the water level of
the ith reservoir at the tth time. Wi

min and Wi
max are the minimum and

maximum water level of the ith reservoir, respectively. The variables of
above equations are non-negative.

In this study, the Wi
min and Wi

max are equal to annual top of buffer
pool and seasonal top of buffer pool, respectively. Eqs. (3) and (4) are
the water balance equation and hydraulic connection equation, re-
spectively. Eqs. (5)–(7) show the constraints of water release, power
output and reservoir water level, respectively.

3.2. NSGA-II with a successive approximation approach

The multi-objective optimization operation of M (M=21 in our
case) mega cascade reservoirs in flood seasons is typically a highly non-
convex nonlinear function characterized by many constraints, where
the variables and equations of the model could be discontinuous and/or
non-differentiable with many local minima. The objective functions of
flood risk (Eq. (1)) and hydropower generation risk (Eq. (2)) are the
statistic characteristics of simulation results, while the constraints are a
set of strong restraints constituted by the hydraulic and electricity
connections between high-dimensional cascade reservoirs. The non-
dominated sorting genetic algorithm-II (NSGA-II) proposed by Deb
et al. [34] has the ability to search a diverse set of Pareto Frontiers.
NSGA-II can be easily integrated with simulation models to improve the
performance of non-linear multi-objective optimization. Although the
NSGA-II has been found quite successful in tackling a wide variety of
reservoir optimization operation and water resources management
problems [30,37–41], it, similar to other evolutionary intelligent al-
gorithms, has a drawback of the curse of dimensionality, especially in
complex high-dimensional optimization problems. The number of re-
servoirs for joint operation during flood seasons is usually less than ten
due to the curse of dimensionality mentioned previously. Because the
numbers of decision variables and constraints in this river system are
huge and they are closely interacted and notoriously influenced, how to
search the optimal solution to this meta complex nonlinear system
became a great challenge. Being credited to the recent development of
computers with high-speed computation ability and huge storage ca-
pacity, this complex high-dimensional problem can be managed much
more efficiently and satisfactorily. In general, the standard NSGA-II
creases a new solution using its antecedent solution (previous best so-
lution) with crossover and mutation operators. For the proposed hybrid
evolutionary algorithm with successive approximation, operation po-
licies are first produced by the standard NSGA-II, and then the joint
reservoir operation is optimized successively by incorporating a suc-
cessive approximation approach into the NSGA-II. That is to say, the
NSGA-II coupled with a successive approximation approach can reduce
the dimension of decision variables through progressively im-
plementing a series of optimization procedure associated with each
cascade reservoir from upstream to downstream, and thus would im-
prove the capability of jumping out of local minima and searching for

global optimum.
The proposed hybrid evolutionary algorithm (NSGA-II) with a suc-

cessive approximation approach implements the following computation
steps.

Step 1: Initialize feasible solutions of a population P0 of size Npop

based on the standard NSGA-II procedure (Fig. 3(a)) for every re-
servoir and evaluate fitness values; implement the fast non-domi-
nated sorting to divide the population into different ranks; and
calculate crowding distances of the population.
Step 2: Implement the crowded tournament selection operator to
choose chromosomes with a higher fitness value (i.e., elitism pre-
servation strategy) for producing the offspring of the next genera-
tion in the gene pool; implement the crossover operator with
probability (Pc) to re-combine two parent chromosomes into new
offspring chromosomes; and implement mutation operator with
probability (Pm) for maintaining genetic diversity in the population.
Three genetic operators are utilized to generate an offspring popu-
lation Q0 of size Npop.
Step 3: For every generation t, evaluate the fitness values of Qt;
combine Qt-1 and Qt into an intermediate population Pt of size 2Npop;
implement the fast non-dominated sorting to divide this combined
population into different ranks; and compute crowding distances of
the population.
Step 4: Select a new parent population Pt+1 of size Npop from Pt
using the crowded tournament selection; generate an offspring po-
pulation Qt+1 through crossover and mutation operators; and
evaluate their fitness values.
Step 5: Terminate the computation based on stop criteria by eval-
uating the solutions through Steps 2–4. If the iteration number is
less than the maximal generation (Gmax), then repeat Steps 2–5.
Otherwise, output the best solution set (Sbest,0) as the initial input of
the NSGA-II coupled with a successive approximation approach.
Step 6: Implement the successive approximation approach.
Regenerate the decision variables of the 1st reservoir in the upper
river basin to obtain the new best solution set (Sbest,1) as well as the
corresponding fitness according to Steps 2 and 3 while the other
decision variables of the 2nd – Mth reservoirs remain unchanged. If
the fitness of the new solution set (Sbest,1) is better than that of the
previous best solution set (Sbest,0), then Sbest,0 is replaced by Sbest,1.
Step 7: Select the next reservoir to be optimized and update the
solution set. The successive approximation approach is used to
successively generate the initial feasible solutions for each cascade
reservoir located from upstream to downstream (Fig. 3(b)). In other
words, the mutually related M-dimensional (M=21 cascade re-
servoirs) initial feasible solutions will be effectively decomposed
into M individual one-dimensional initial feasible solutions, which
adequately overcomes the curse of dimensionality.
Step 8: Repeat Step 7 until the whole cascade reservoirs system has
been optimized progressively to obtain the multi-objective optimal
solutions (Fig. 3(c)).

In our case, this NSGA-II model is driven by a total of 119,784 da-
tasets (=21 reservoirs ∗ 92 days ∗ 62 years), which means we have
119,784 decision variables and 479,136 constraints (=4 equa-
tions ∗ 119,784 decision variables). The use of the proposed successive
approximation approach will effectively reduce the numbers of decision
variables to 5704 (=92 ∗ 62) and constraints to 22,816 (=4 ∗ 92 ∗ 62),
respectively, where the 21-dimensional initial feasible solutions could
be decomposed into 21 one-dimensional initial feasible solutions. After
implementing an intensive trial-and-error procedure (e.g. sought for a
large number of initial feasible solutions to satisfy more than ten
thousand constraints), the parameters used in running the NSGA-II for
searching converged solutions were set as: population size
Npop= 1000; Gmax= 500; Pc= 0.9; and Pm=0.1. The non-dominated
solutions can provide decision makers and stakeholders with an
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opportunity to evaluate and pre-experience the consequences of various
alternatives between the two objectives.

3.3. Evaluation indicator

Considering the complex water-energy nexus of cascade reservoir
operation, one must not rely solely on one single criterion when eval-
uating the contribution of multi-objective reservoir operation to sus-
tainable hydropower development. The six evaluation indicators, i.e.
flood risk (Eq. (1)), power generation risk (Eq. (2)), hydropower output,
reservoir impoundment efficiency, water supply and CO2 equivalency,
were applied to making a comprehensive assessment on the perfor-
mance of the optimal reservoir operation solutions. The latter four in-
dicators are described as follows.

Annual average hydropower output (HO)
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HO HO
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where HO is the hydropower output; HOi is the hydropower output of
the ith reservoir; M is the number of reservoirs; and tΔ is the time step.

Annual average reservoir impoundment efficiency (IE)
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where IE is the impoundment efficiency; IEi is the impoundment effi-
ciency of the ith reservoir; jSF ( )i is the final storage of the ith reservoir
in the jth year; and SIi is the storage corresponding to the top of inactive
pool in the ith reservoir.

Annual average water supply (WS)
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where WS is the water supply; and WSi is the water supply of the ith
reservoir.

Annual average carbon dioxide (CO2) reduction (CDR)

∑=
=

CDR CDR
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i
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(11a)

=CDR HO ·E(CO )i i 2 (11b)

where E(CO )2 is the CO2 equivalency for hydropower generation; CDR
is the CO2 reduction for hydropower generation; and CDRi is the CO2

reduction for hydropower generation in the ith reservoir.

4. Results and discussion

An AI-based optimization approach triggering a new niche in
spurring hydropower output under existing hydraulic infrastructures is

Fig. 5. Illustration of the SOP solution and the optimal solutions of the NSGA-II. (a) NSGA-II Pareto Frontiers between flood risk (FR) and hydropower generation risk
(PGR). (b) Increase of FR=FRNSGA-II− FRSOP. (c) Decrease of PGR=PGRSOP− PGRNSGA-II. The comparative results of the joint operation of 21 cascade reservoirs
obtained from the SOP and the NSGA-II are illustrated according to the whole Upper Yangtze River Basin (WUB) and the six regions (A–F), respectively.
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Fig. 6. Pareto Frontiers between flood risk (FR) and power generation risk (PGR). The illustration is made for 21 cascade reservoirs in six regions (A-F) of the whole
Upper Yangtze River Basin.
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explored in this study. We comprehensively investigate the behavior
revealed in the joint operation of the top 21 cascade reservoirs with
total reservoir storage exceeding 109.76 billion m3 in the whole Upper
Yangtze River Basin (WUB) of China (Fig. 1(b), Table 1). Prior to
construction of the optimization model, we suggest strategies of earlier
timings of initial impoundment and higher water levels (water head for
hydropower generation) of reservoirs after cross-examining the climatic
and hydrological data of this study area (see Table 1). These two op-
erational strategies will pave the way for boosting hydropower output.
Based on the two strategies, we next develop an optimization model for
the joint operation of 21 mega cascade reservoirs in flood seasons,
targeting hydropower generation while considering flood control,
water utilization and CO2 emission reduction. This model is driven by a
total of 119,784 datasets (=21 reservoirs ∗ 92 days ∗ 62 years), where
these massive high-dimensional data consist of the initial and final re-
servoir impoundment timings, annual and seasonal tops of the buffer
pools of reservoirs, and daily reservoir inflow series collected in flood
seasons (August 1st–October 31st, 92 days) during 1955 and 2016
(62 years) (Table 1 and Fig. 2). It is noted that the very complex non-
linear operation system with huge numbers of decision variables
(119,784) and constraints (479,136=4 equations× 119,784) in our
case can be tackled by the proposed methodology (shown in Fig. 3). The
results are presented and discussed in details, shown below.

4.1. Behavior assessment between hydropower generation and flood control

In this study, the NSGA-II is implemented with two objectives:
minimizing flood risk (FR) and minimizing hydropower generation risk
(PGR) (i.e. maximizing hydropower output; refer to Eqs. (1a) and (2a)
of Section 3). Each of the Pareto Frontiers obtained from the NSGA-II
represents an optimal solution, where no objective can be improved
without sacrificing at least one other objective. The SOP of reservoirs
serves as the benchmark in this study. Fig. 5(a) visualizes the SOP

solutions and the widely and distinctly distributed Pareto Frontiers
obtained from the NSGA-II for the WUB and Regions A–F, respectively.
The results show that the NSGA-II not only produces the best solution to
each objective but supplies a large number of optimal solutions com-
promised between both objectives, which means the Pareto Frontier
solutions can adjustably counterbalance the risks between flood control
operation and hydropower generation simultaneously. That is to say,
more operational alternatives are available to decision makers. Besides,
the NSGA-II always produces much smaller hydropower generation
risks than the SOP when there is no flood risk (flood risk= 0). For a
very large watershed like the Yangtze River Basin (1.8 million km2), the
effect of a single flood event on reservoir operation in various regions
could be very different. From the perspective of the optimization of
flood control operation, the solutions of the Pareto Frontiers can be
adaptive to different magnitudes of flood events: the minimum flood
risk solution (Point I of WUB in Fig. 5(a)) is suitable for managing large-
scale flood events; the minimum hydropower generation risk solution
(Point III of WUB in Fig. 5(a)) is suitable for managing small-scale flood
events; and the compromised solutions are suitable for managing
medium-scale flood events.

Fig. 5(b) and (c) summarizes the differences in flood risk and hy-
dropower generation risk between the SOP solution and the optimal
solutions (1000 in our case) of the NSGA-II in the WUB and Regions A-
F, respectively. From Fig. 5(b), the increase (=FRNSGA-II− FRSOP) of
flood risk spans between 0 and 0.016 for the WUB. In Regions A, B, E
and F (Fig. 6), we have two important findings. The first finding is that
the maximum flood risk decreases with the elevations of reservoir lo-
cations in the same region, which indicates the flood risk of a reservoir
situated at a higher elevation is sensitive to the reservoir impoundment
timing (e.g. shift the initial impoundment timing from September 1st to
August 20th) and the reservoir water level (e.g. raise the upper
boundary of the buffer pool from annual top to seasonal top). In con-
trast, the flood risk of a reservoir situated at a lower elevation is

Fig. 7. Spatial distribution of FR and PGR with respect to the optimal FR and PGR solutions obtained from the NSGA-II. FR denotes flood risk. PGR denotes
hydropower generation risk. The comparison is made for 21 cascade reservoirs in six regions (A-F) of the whole Upper Yangtze River Basin (WUB).
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relatively insensitive to these two pre-set strategies. The reason is that
along the cascade, reservoirs located at higher elevations are operated
to raise reservoir water levels for increasing impoundment volumes,
which result in a decrease in flood flow and the inflow of reservoirs
located at lower elevations. As a consequence, the flood risk of a re-
servoir at a lower elevation can be significantly mitigated. The second
finding is that the changes in flood risk are much larger for reservoirs
with earlier initial impoundment timings than those with later im-
poundment timings in the same region (e.g., Reservoir A5 vs. Reservoir
A6, Fig. 6). The reason is that the scales of floods occurring during
earlier initial impoundment periods are commonly larger than those
occurring during later impoundment periods in the same region, and
thus causes higher flood risks. From Fig. 6, we notice that: (1) because
Reservoir C1 is situated in parallel with Reservoir C2 and both have
later initial impoundment timings (Fig. 1(b) and Table 1), there is no
much difference in the maximum flood risk of the two reservoirs; and
(2) along the cascade of the four reservoirs in Region D, the maximum
flood risk of a reservoir with an earlier initial impoundment timing is
much higher than that of a reservoir with a later initial impoundment
timing in the same region (e.g., Reservoirs D3 and D4 vs. Reservoirs D1
and D2, see Table 1). Therefore, the changes in the maximum flood risk
in Region D does not decrease sequentially, as compared to those of the
other five regions. In Fig. 5(c), the decrease (=PGRSOP− PGRNSGA-II) of
hydropower generation risk falls within 0.050 and 0.078 for the WUB.
We notice that in comparison with the SOP solution, the optimal PGR
solution obtained from the NSGA-II can largely improve the reliability
of hydropower generation, with just a slight increase in flood risks.
Besides, the changes in hydropower generation risk differ a lot among
the six investigative regions, in which cascade reservoirs always suffer
from different degrees (values> 0) of hydropower generation risk,
except for those in Region D where the hydropower generation risks of

Reservoirs D1 and D4 reach zero (Table 1 and Fig. 6). The reason is that
the optimal joint operation of cascade reservoirs can easily make trade-
offs between hydropower generation risk and flood risk when the in-
stalled hydropower capacity of a reservoir is small (e.g. Reservoir D1
and D4). In contrast, when the installed hydropower capacity of a re-
servoir is large, the hydropower generation risk cannot reduce to zero if
the flood risk slightly increases (e.g. Reservoirs F1, F2 and F3, see
Table 1).

4.2. Trade-offs of the risks between hydropower generation and flood
control

Fig. 7 visualizes the trade-offs between flood control and hydro-
power generation concerning the optimal FR and PGR solutions ob-
tained from the NSGA-II for the 21 cascade reservoirs. It is easy to
identify which reservoir exposes to the maximum flood risk (e.g., the
maximum value 0.031 occurs at Reservoirs A1) or the maximum hy-
dropower generation risk (e.g., the maximum value 0.131 occurs at
Reservoirs F3). According to the spatial distribution of reservoirs, the
optimal PGR solution projects less flood risk on cascade reservoirs lo-
cated downstream than upstream in the same region, except for Region
D. The reason is that reservoirs with later initial impoundment timings
will suffer lower flood risks than those with earlier timings in the same
region (e.g., Reservoirs D3 and D4 vs. Reservoirs D1 and D2, see
Table 1). The trade-offs between flood control and hydropower gen-
eration for each cascade reservoir revealed in Fig. 7 can significantly
assist in decision-making on reservoir operation. We note that the
Pareto Frontiers could help decision makers to select one of the best
solutions that would satisfactorily fulfill their operation goals and
benefits with the corresponding risk under a considered circumstance.

Fig. 8. Indicators of the SOP solution, the optimal flood risk (FR) solution and the optimal hydropower generation risk (PGR) solution. (a) Hydropower outputs and
benefits. (b) Reservoir impoundment efficiency and water supply. (c) Reduction of CO2 emission. The two optimal solutions were obtained from the NSGA-II. The
results are presented according to the whole Upper Yangtze River Basin (WUB) and the six regions (A–F), respectively.
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4.3. Hydropower benefits

The renewable hydropower energy can be fed into the power supply
system of the China Power Grid to replace a part of power produced on
the basis of fossil fuels. For the Upper Yangtze River Basin, the hy-
dropower price can reach as high as 45.3 USD/MW·h. Fig. 8(a) presents
the results of hydropower outputs and benefits with respect to the SOP
solution, the optimal flood risk (FR) solution and the optimal hydro-
power generation risk (PGR) solution, respectively. It appears that the
optimal FR and PGR solutions obtained from the NSGA-II model can
largely improve hydropower outputs (benefits) by 3.15 billion kW·h/
year (142 million USD/year) and 9.87 billion kW·h/year (447 million
USD/year) accordingly. In other words, the total hydropower output
can achieve 110.79 billion kW·h/year and the improvement rate of
hydropower output can reach as high as 9.8%, in comparison with that
of the SOP solution. The results indicate that hydropower benefits can
be significantly improved when the reservoir impoundment timing can
be advanced and the reservoir water level can be lifted according to the
two optimal solutions. More interesting characteristics (behaviors) of
the joint operation of cascade reservoirs in sub-basins (Regions A-F) can
be found in this study. For example, it is noted from Fig. 8(a) that
cascade reservoirs located along the mainstream (e.g. Regions A and F)
produce much larger hydropower outputs and benefits than those lo-
cated along tributaries (e.g. Regions B, C, D, E). This is because that
reservoirs in Region A not only have higher conversion efficiency from
potential energy to electricity owing to their high elevations
(4000–5000m, see Fig. 1(b)) but also has larger total installed hydro-
power capacity (13.76 GW, see Table 1) than the other regions. Region
F produces the largest hydropower outputs and benefits out of the six
regions because Region F embraces massive water, aggregated from
upstream and tributaries, to generate hydropower through converting
kinetic energy to electricity at high efficiency. The installed hydro-
power capacity of Region F reaches 44.11 GW, in which the Three
Gorges Reservoir (TGR) occupies 22.50 GW.

4.4. Water utilization

Fig. 8(b) presents the results of reservoir impoundment efficiency
and water supply. In comparison with the SOP solution, the optimal
flood risk and hydropower generation risk solutions of the NSGA-II
model can improve reservoir impoundment efficiency (water supply) by
1.13% per year (521 million m3/year) and 1.92% per year (881 million
m3/year) accordingly. We would also like to point out that based on our
proposed methodology, reservoirs with larger flood control capacities
(e.g., the three reservoirs in Region F, see Table 1) will have a greater
potential for significantly improving the efficiency of reservoir im-
poundment and water supply. With the pre-set initial impoundment
timings (Table 1), we suggest that reservoirs located in the upper zone
(e.g., Regions A and B) can implement reservoir impoundment opera-
tion earlier while reservoirs located in the lower zone or along the
mainstream (e.g., Region F) shall implement reservoir impoundment
operation later to synergistically optimize water utilization. Besides, the
water supply of Regions B and F is much larger than that of the other
four regions under similar reservoir impoundment rates (95–99%). This
could be a consequence of the large reservoir capacities of the two re-
gions, where the total reservoir storage capacities of Regions B and F
are 13.79 billion m3 and 62.90 billion m3, respectively (Table 1).

4.5. CO2 emission reduction

For China, the most suitable way to deal with the inevitable conflict
between rapid economic growth and high CO2 emission is to make a
transition into a sustainable low-carbon energy system, in particular the
development of renewable hydropower energy. Hydropower produc-
tion cost is comparatively cheap among energy sources, and its CO2

emission combustion is much lower than that of electricity generation

from fossil fuels [42]. The GHG equivalencies calculator developed by
the United States Environmental Protection Agency (https://www.e-
pa.gov/energy/greenhouse-gas-equivalencies-calculator) was used in
this study to roughly estimate the amount of CO2 emission reduction.
Considering, for example, carbon footprint values, a combined-cycle
natural gas plant and a fossil energy plant have emissions of
0.350–0.400 kg and 0.800 kg CO2 equivalent/ kW·h, respectively [42].
In contrast, a typical CO2 emission of a hydropower plant is 0.015 kg
CO2 equivalent/ kW·h, which is about 30–60 times less than those of
fossil fuel generation [4]. Thus, the CO2 emission reduction for hy-
dropower production in comparison with fossil energy is equal to
0.785 kg CO2 equivalent/kWh (CO2 equivalent of fossil energy− CO2

equivalent of hydropower=0.800− 0.015). Fig. 8(c) presents the CO2

emission reduction, and the results of the optimal flood risk solution
and the optimal hydropower generation risk solution indicate that the
CO2 emission can be reduced by 2.47 billion kg/year and 7.75 billion
kg/year, respectively for the WUB, in comparison with the SOP solu-
tion. Such huge reduction of CO2 emission can be achieved and will
make a great contribution to improving air quality and eco-environ-
ment locally if the renewable hydropower can be implemented to re-
place the thermal power. It is also noted that the reduction of CO2

emission in Regions A and F is obviously much more significant than
that of the other four regions. Taking account of the hydropower out-
puts shown in Fig. 8(a), it reveals that the higher the hydropower
output is, the more the CO2 emission can be reduced. This is because
the reduced volume of CO2 emission is linearly dependent on hydro-
power output through the GHG equivalencies calculator (i.e., 0.785 kg/
kWh).

5. Conclusions

Encountering great challenges and dilemmas in energy production
and CO2 emission mitigation, China nowadays is in transition to a low-
carbon and renewable energy system for sustainable development.
Hydroelectricity is expected to trigger greater development in the fu-
ture and contribute significantly to the low-carbon economy. The joint
operation of reservoirs can better utilize water resources, however,
difficulty faced in joint operation soars quickly as the number of re-
servoirs increases. In this study, we aim at maximizing the hydropower
output of 21 mega cascade reservoirs (storage capacity ≥200 million
m3) in the Upper Yangtze River Basin of China during flood seasons.
The proposed methodology integrated the Non-Dominated Sorting
Genetic Algorithm-II (NSGA-II) with a successive approximation ap-
proach based on two designed impoundment strategies to synergisti-
cally optimize the multi-objectives of 21 jointed cascade reservoirs
operation. The successive approximation approach could effectively
decompose the mutually related M-dimensional problem into M in-
dividual one-dimensional problems, which would ingeniously over-
come the curse of dimensionality. The results demonstrated that our
proposed methodology not only could significantly increase the effi-
ciency and benefits of hydropower generation (reaching 110.79 billion
kW·h/year, i.e. 9.8% improvement, as compared with 21 single re-
servoir operation using the SOP) but also could greatly contribute to
water utilization and CO2 emission reduction with a very small flood
risk (less than 0.016). Consequently, a new niche of joint cascade re-
servoir operation can be explored to lift hydropower output at no or
little cost of flood risk, accompanied with benefits in water supply and
CO2 emission reduction. In accordance with the Pareto Frontiers ob-
tained from the NSGA-II, we also suggest operational guidelines for
decision makers and stakeholders to implement adequate reservoir
operation according to the magnitudes of flood events. From the tech-
nical point of view, the main differences between the SOP solution and
the NSGA-II optimal solutions are: (1) the former is a conventional si-
mulation method while the latter is a multi-objective optimization al-
gorithm by a powerful state-of-the-art tool (an AI technique); (2) the
former produces linear operation while the latter produces non-linear
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operation; and (3) the former considers only one objective at a time and
thus fails to synergistically optimize two objectives simultaneously
while the latter not only provides the best solution for each objective
but supplies a large number of optimal solutions (1000 in our case) for
both objectives, which could help decision makers to choose one of the
best solutions to fulfill their goals with corresponding risk under a
considered circumstance.

For future work in making real-time joint operation of cascade re-
servoirs in response to a foreseeable flood event in a vast watershed, we
suggest to explore a real-time optimal reservoir operation methodology
that maximizes the hydropower generation and water utilization under
the limitation of no flood risk. Accurate and reliable multi-step-ahead
forecasts on the arrival and the peak of a flood using modern techniques
like AI and remote sensing [20,43,44] will substantially assist decision
makes in precisely determining which optimal solution is appropriate to
implement for curtailing the risks in flood control and hydropower
generation.
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