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In this study, we propose a soft-computing methodology to visibly explore the spatio-temporal ground-
water variations of the Kuoping River basin in southern Taiwan. The self-organizing map (SOM) is imple-
mented to investigate the interactive mechanism between surface water and groundwater over the river
basin based on large high-dimensional data sets coupled with their occurrence times. We find that
extracting the occurrence time from each 30-day moving average data set in the clustered neurons of
the SOM is a crucial step to learn the spatio-temporal interaction between surface water and groundwa-
ter. We design 2-D Topological Bubble Map to summarize all the groundwater values of four aquifers in a
neuron, which can visibly explore the major features of the groundwater in the vertical direction. The
constructed SOM topological maps nicely display that: (1) the groundwater movement, in general,
extends from the eastern area to the western, where groundwater in the eastern area can be easily
recharged from precipitation in wet seasons and discharged into streams during dry seasons due to
the high permeability in this area; (2) the water movements in the four aquifers of the study area are
quite different, and the seasonal variations of groundwater in the second and third aquifers are larger
than those of the others; and (3) the spatial distribution and seasonal variations of groundwater and sur-
face water are comprehensively linked together over the constructed maps to present groundwater char-
acteristics and the interrelation between groundwater and surface water. The proposed modeling
methodology not only can classify the large complex high-dimensional data sets into visible topological
maps to effectively facilitate the quantitative status of regional groundwater resources but can also pro-
vide useful elaboration for future groundwater management.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

Groundwater is a crucial resource to humans and ecosystems.
In the context of sustainable water resources management, it is
important to explore the mechanisms between groundwater and
surface water for quantifying the amount of groundwater recharge
and extraction. Modeling complex groundwater systems is one
focus of current research in hydrological sciences (e.g. Bauer
et al., 2006; Henriksen, et al., 2003; Wada et al., 2014). Most up-
to-date researches have been directed from the development of
numerical models to simulate the dynamics of surface water–
groundwater interactions and/or assess the quantitative status of
groundwater resources (e.g. Hartmann et al., 2015; Jan et al.,
2007, Nourani and Mano, 2007; Tremblay et al., 2011). Despite
great efforts put in exploring the complex spatio-temporal patterns
inside groundwater data, the characteristics of aquifers remain lar-
gely unknown and modeling the dynamic complex groundwater
systems is still a great challenging task with practical limitations,
such as the high expense needed to overcome data availability
(e.g. Anderson et al., 2015; Mohanty et al., 2015).

In watersheds with limited hydro-geophysical information,
data-driven models could be a valuable alternative to extracting
valuable relations inside input-output patterns and to modeling
complex hydrologic systems. Artificial neural networks (ANNs)
are such tools for effectively modeling nonlinear systems and
capturing spatio-temporal characteristics of patterns with less
computational requirements (e.g. Abrahart et al., 2012; Floreano
et al., 2008; Shen and Chang, 2013). Over the last decades, ANNs
have raised an increasing interest in modelling hydrological pro-
cesses and therefore has led to a tremendous surge in research
activities (e.g. Chang et al., 2016; Isik et al., 2013; Mekonnen
et al., 2015; Mount et al., 2016; Nourani, 2017; Quiroga et al.,
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2013; Tsai et al., 2016). ANNs have also been applied with success
to the temporal prediction of groundwater levels (e.g. Krishna
et al., 2008, Sethi et al., 2010; Tapoglou et al., 2014; Tremblay
et al., 2011; Tsai et al., 2016; Uddameri, 2007; Yoon et al.,
2011). The aforementioned ANNs-based groundwater models
were developed mainly to imitate single time series but rarely
to model regional groundwater levels (e.g. Mohanty et al., 2015;
Tsai et al., 2016). This study intends to explore the spatio-
temporal dynamics of groundwater systems and assess the inter-
relation of regional groundwater variations with surface water
through the state-of-the-art techniques.

With very uneven rainfall, high mountains and steep-sloped
rives all over the Taiwan Island constrain the storage and use
of water resources. Consequently groundwater resources become
vital especially during long-drought periods. In response to the
industrial development and population aggregation in the last
half-century, groundwater resources have been over drawn,
which has caused severe subsidence and the depletion of
groundwater storage space in many parts of the island (Chen,
et al., 2007; Hung, et al., 2012; Wada, et al., 2012). Effective
groundwater resources management is a crucial task. The subsi-
dence and large variations of groundwater levels over the dec-
ades suggest a precise and detailed study is required for
elucidating the behavior of groundwater fluctuations in both
spatial and temporal scales. The purpose of this study was thus
to comprehensively investigate and model regional groundwater
variations for sustainable management of groundwater
resources. The variation of groundwater in the whole basin
was analyzed by using a clustering method to identify the
spatio-temporal characteristics of groundwater levels. We pro-
posed a soft-computing technique that can visibly describe and
foresee the complex-dynamic regional groundwater variations
at high spatial and temporal resolutions.

The paper is organized into five sections. The first section intro-
duces the general background and ideas used in this study. The
second section describes the study area and datasets used in mod-
eling processes. The third section describes the methodology and
focuses on how the ANN models can be implemented to model
regional groundwater levels. The fourth section presents the
results of scenario calculations relevant to regional water resources
management. The final section summarizes the results and gives
conclusions regarding the coupled surface water/groundwater sys-
tems in semiarid regions.
2. Study area and dataset

The Kuoping River basin is the largest drainage basin (3257
km2) in Taiwan, and the river meanders 171 km through a highly
rugged terrain in the Central Mountain Range towards the south-
ern part of Taiwan Strait, where the Pingtung Plain is situated
with rich groundwater resources (Fig. 1). The mean annual rain-
fall of this basin is close to 3000 mm, while over 90% of which
appears in the wet season during May and October, which is
influenced by typhoons and monsoons. The amount of the wet-
season flow would increase approximately 10 times than that of
the dry-season flow. The extremely uneven distribution of rainfall
and stream flows over seasons has resulted in a severe issue of
water resources management. The basin is primarily planned
for agricultural productions and stock farms, while the latest
development of fish farms and industrial complexes requires
more water. Due to the tremendous water demands that continue
growing inevitably, the over-exploitation of groundwater by dif-
ferent sectors has caused a severe drop of groundwater levels
and subsidence and thus has imposed great pressure on the
environment.
To better learn the status and effectively manage the vital
groundwater resources in the study basin, we collected the
basin-wide daily hydrological monitoring data sets (during 1999
and 2015) to perform the data-mining analysis and model con-
struction. 126 time series of groundwater levels and three time
series of river flow were obtained from the Water Resources
Agency (WRA), Taiwan. Thirteen time series of precipitation were
obtained from the Central Weather Bureau, Taiwan. Fig. 1 shows
the locations of the study area and monitoring stations, and
Fig. 2 shows the geological characteristics of the basin, where four
thick aquifers can be found in various areas.

3. Methodology

In this study, we explore the spatio-temporal dynamics of
groundwater systems through the soft-computing techniques that
can visibly describe and foresee the complex-dynamic regional
groundwater variations. The large high-dimensional data sets cou-
pled with their occurrence times are analyzed, and the proposed
methodology is presented as follows.

3.1. Data preprocessing

In order to eliminate the elevation effects of different observa-
tional groundwater wells, we adopted the relative groundwater
level (RGL), i.e. the groundwater water level was subtracted by
the minimum value of historical observed groundwater levels, as
shown in Eq. (1), in this study.

WLi;Relative ¼ WLi;Original �WL0i;min ð1Þ
where i represents the ith well, WLi;Relative represents the relative
groundwater level, WLi;Original represents the original groundwater
level, andWL0i;min represents the minimum value of the original (his-
torical) groundwater levels.

The moving average method is commonly used with time series
data to smooth out short-term fluctuations and highlight longer-
term trends and/or cycles, and the produced data sets are logically
coherent in the time domain. We used 30-day moving average to
analyze data points by creating a series of data, each of which
was averaged over a subset (30 daily data) of the original RGL data
set (ranging between 1999/01/01 and 2015/12/2). The 30-day
moving average of RGLs was calculated, where a total of 6180 data
sets were obtained and each data set included the RGLs of 126
wells. Table 1 summarizes the groundwater, precipitation and flow
records in the last sixteen years (1999–2015) used in this study.

3.2. SOM overview

The self-organizing map (SOM) proposed by Kohonen (1982) is
a powerful method used to explore the interrelationships of high-
dimensional multivariate systems, and it is effective for clustering
and forecasting in a wide-spread range of disciplines. A key benefit
of the SOM is its ability to extract implicit patterns from high-
dimensional input data sets and classify the obtained patterns into
a low-dimensional output layer, where similar inputs remain close
together in the output neurons while preserving data structure.
The neurons in the output layer are commonly arranged in two-
dimensional grids so that the constructed topology can be visual-
ized to give an insight into the system under investigation. The
SOM has gained increasing interest and been successfully applied
to water resources management. A number of promising
researches related to the modeling of groundwater processes are
briefly reviewed as follows. For instance, Hassan et al. (2014) mod-
eled the structural and hydrological complexity of hard rock sys-
tems affecting the dynamics of surface–groundwater



Fig. 1. Locations of groundwater wells installed with 126 sensors spreading over four aquifers in the Pingtung Plain of Taiwan.
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interactions; Krause et al. (2007) indicated that the interactions of
the investigative system could be characterized by temporal and
spatial variability; Tremblay et al. (2011) found drastically differ-
ent patterns of variability evolution for the records in three Cana-
dian regions; and Jan et al. (2007) indicated the effective
accumulated rainfall amount highly-correlated to the difference
between groundwater levels at each moment. Recently, the SOM
has been satisfactorily applied to regionalization studies (e.g.
Agarwal, et al., 2016; Chang et al., 2016) and watershed classifica-
tion (e.g. Ley et al., 2011; Razavi and Coulibaly, 2017).
3.3. Configure the SOM

This study configured an SOM to cluster a large number of
high-dimensional regional RGLs into a visible 2-dimensional
topology of regional RGL maps. The map size of the SOM must
be determined at first. Even though we did have a large number
of data sets, which, however, were logically coherent in the time
domain due to the 30-day moving average procedure conducted
to synthesize the time series data sets. Consequently, we only
tried a few map sizes (i.e. 3 * 3, 4 * 4 and 5 * 5). The constructed



Fig. 2. Geological setting of the main stratigraphic compositions in the Pingtung Plain (modified from the original map provided by the Central Geological Survey, MOEA,
Taiwan).

Table 1
Basic statistics of relative groundwater levels, rainfall and river flow in the last sixteen years (1999–2015).

Aquifers Number of stations

East West

A 18 21
B 20 13
C 14 19
D 7 14

Total E1–E59 W1–W67

Month RGL (m) Rainfall (mm) Flow (cm)

East West

1 6.03 3.01 19 72
2 4.76 2.72 24 68
3 3.61 2.44 35 72
4 2.66 2.18 90 80
5 2.33 2.15 360 184
6 4.73 2.72 578 453
7 7.15 3.17 663 477
8 9.27 3.82 766 631
9 10.31 4.15 444 455
10 9.86 3.99 123 222
11 8.53 3.69 44 116
12 7.30 3.45 38 84

Mean 6.38 3.12
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topological maps coupled with related key features (Averaged RGL
and weights) of aquifer B were shown in Fig. 3. The results indi-
cated that (1) the small network (i.e. 3 * 3) could not fully present
the regional RGL classification, while there were many similar
clusters in the large network (5 * 5), and (2) the 4 * 4 network
was considered the most suitable for presenting the topology of
(a) 

(b) 

(c) 

0 m  10 m  

Fig. 3. The constructed (a) 3 * 3, (b) 4 * 4, and (5 * 5) SOM topo
regional RGL classification. The 126 RGLs were distributed in four
heterogeneous aquifers, and the groundwater monitoring wells
were discontinuous with respect to vertical aquifers. The three
dimensional problem could not be well presented in a 2-
dimensional SOM map. Consequently, we made a 2-dimensional
SOM map for each aquifer. To better display the variation of RGLs
 Ave RGL Ave Weight  

logical maps coupled with their key features of aquifer B.
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in each aquifer, the Ordinary Kriging method was used to connect
RGLs within an aquifer to form a 2-dimensional SOM map for pre-
senting the spatial distribution of RGLs in the aquifer. The Kriging
is an interpolation method that gives the best unbiased linear esti-
mation of the intermediate values and is widely used in the
domain of spatial analysis (e.g. Tapoglou, et al., 2014, Parajka,
et al., 2015; Piazza, et al., 2015).
Fig. 4. Research flow c

Fig. 5. Relative groundwater levels cla
We intended to classify and quantify the large complex high-
dimensional data sets based on soft-computing techniques (SOM
topological maps) and make a comprehensive analysis of ground-
water variations in four aquifers to learn and present their
spatio-temporal features. The comprehensive analytical frame-
work is shown in Fig. 4, which can be divided into four major
schemes presented as follows.
hart of the study.

ssified by the SOM (4x4 neurons).
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Scheme 1: SOM configuration

A 4 * 4 SOM network was configured based on large data sets
(i.e. 6180), where each data included 126 RGLs (Fig. 5). Because
the wells were distributed in four aquifers, the configured SOM
would be thus displayed in four topological maps for the corre-
sponding aquifers, respectively.

Scheme 2: Seasonal identification

As the SOM was configured, we could identify the temporal
information of the clustered data sets in each neuron in a seasonal
scale for allocating these data into four seasons.
Fig. 6. Temporal distribution displayed in each neuron, which prominently shows seaso
figure legend, the reader is referred to the web version of this article.)
Scheme 3: Spatio-temporal analysis

The RGL topological maps in four aquifers could be
obtained. The Kriging method was applied to drawing the
RGL distribution of the neurons. Thus, the RGLs of four aqui-
fers could thus be fully visualized. To easily tell the differences
and interrelation, we designed a ‘‘2-D Topological Bubble Map”
to merge all the averaged RGL values of four aquifers in a
neuron so that the vertical relations could be quantified into
the ‘‘Topological Bubble Map”. The whole multi-dimensional
data sets could then be summarized and therefore we could
visibly explore the major features of the RGLs in the vertical
direction.
nal changes between neurons. (For interpretation of the references to colour in this
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Scheme 4: Surface water and groundwater relationships

To assess the possible relations between surface water and
groundwater, we computed the average rainfall and flow amounts
in a neuron, which represented the surface water information in a
specific time interval of the corresponding neuron, and put all the
information (surface water and RGLs in four aquifers) together so
that we could easily examine the possible relationship inside the
topological features maps.

4. Results and discussion

As mentioned above, the 30-day moving average procedure was
used to synthesize the analyzed data, and a total of 6180 data sets,
where each data set included 126 RGLs, were obtained and used for
constructing the SOM. To excavate the temporal-spatial features
inside the SOM, the time and average RGL in each neuron were
analyzed. We discovered a topological feature shift before & after
2005 through the decomposition of the SOM data structure, and
the similarities of datasets could be organized by year and by sea-
son. Fig. 6(a) indicates the occurrence time of the clustered data
sets in each neuron (years 1999–2015; season coloring: spring_-
green, summer_red, fall_pink, winter_blue; the darker color meant
more data sets were included in a dot), and Fig. 6(b) shows the sea-
sonal changes (moves) between neurons. We noticed that the data
collected before & after 2005 could be easily separated (the dotted
line in each neuron in Fig. 6(a) & the red line in (b)), and such phe-
nomenon might be due to the ‘‘Regulations on Groundwater Con-
servation” implemented by the Government in 2002 and a great
number of farm’s pumping well were shut down in the following
Table 2
The RGL value of each neuron in different aquifers (A, B, C, D) extracted from SOM model

Neuron 1 2

Number 460 23
R* 297 84
F* 299 13
A 5.40 5.2
B 7.35 7.3
C 6.32 6.8
D 5.61 6.1

Neuron 5 6

Number 315 35
R 194 13
F 262 10
A 3.63 3.7
B 4.86 5.0
C 4.51 4.9
D 4.23 4.6

Neuron 9 10

Number 376 52
R 178 36
F 116 84
A 2.49 3.2
B 3.22 4.3
C 3.30 4.2
D 3.30 4.4

Neuron 13 14

Number 300 76
R 179 15
F 135 12
A 2.14 2.2
B 2.69 2.8
C 2.79 2.9
D 2.94 3.2

* R and F denote precipitation (mm) and flow (cms), respectively.
years. The seasonality of each neuron could also be easily identified
because the occurrence times of the data in each group fell within
the same season (Fig. 6(b)). As we assessed in more details, we
found that the neurons well presented a seasonal loop, i.e. neurons
before 2005 formed another cycle, where the seasonal direction of
the group again started from summer to fall (#1, # 2, #3), then
moved to winter (#5, #6), and finally ended in spring (#9, #13).
Neurons after 2005 formed a cycle, where the seasonal direction
of the group started from summer toward fall (#16, #12, #8, #4),
then moved to winter (#7, #11), and eventually returned to sum-
mer (#15, #16) by passing through spring (#14). The seasonal
cycles in the map indicated the neighborhood features of the topol-
ogy and provided extra evidence of the sustained persistent phe-
nomenon in groundwater levels. We also calculated the average
value of the RGLs in each neuron of the constructed SOM for each
aquifer, and the clustering statistics, including the number of data,
rainfall, stream flow, and the average RGL, in each neuron of the
SOM are summarized in Table 2.

The regional RGL distribution was drawn by the Kriging spatial
interpolation method. Fig. 7 displays the horizontal topological
classification of the regional RGLs in four aquifers (A–D). They
could be visualized and explored, where the RGL value increased
from the lower left corner (neuron #13) to the upper right corner
(neuron #4) in the topological distribution. It clearly indicated that
the groundwater level gradually decreased from east to west over
the entire area, which re-confirms the permeability of the eastern
area is much greater than that of the western area (Fig. 2). It was
easy to tell the spatial variation in the neurons, where the RGL
gradually increased from west to east over the entire area (i.e. light
color in the western area and dark color in the eastern area).
.

3 4

0 333 367
561 559

2 688 618
9 6.96 7.46
4 9.20 9.92
1 7.93 8.57
4 6.97 7.67

7 8

7 359 312
4 32 561
5 125 398
7 5.62 6.77
9 7.78 8.91
2 7.08 7.71
8 6.60 7.15

11 12

8 501 434
29 457
91 370

8 4.33 5.37
6 5.97 7.01
4 5.52 6.00
0 5.40 5.68

15 16

6 290 252
5 396 659
0 238 409
6 2.80 3.88
3 3.37 5.00
0 3.13 4.29
4 3.53 4.53



Fig. 7. The SOM topological maps of aquifers A, B, C and D in the Pingtung Plain. The RGLs of each aquifers were classified into 16 groups (neurons) and showed the
neighboring relationship of water level changes.
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As we integrated Fig. 6 with Fig. 7, we could catch the regional
groundwater variation maps of all the four aquifers in different
periods of time (season).

We designed a 2-D Topological Bubble Map to integrate all the
information in the same neuron (cluster) together to elaborate the
link between climate, surface waters, and groundwater in four
aquifers. The inter-relational features of groundwater variations
in four aquifers with rainfall and streamflow could be visibly found
from the designed ‘‘2-D topological bubble map”, where the
groundwater variations in the four aquifers were presented by 4
circles (Fig. 8(a)) and the amounts of rainfall and streamflow were
presented by one circle (Fig. 8(b) and (c)), respectively, for each
clustered neuron. A larger circle means a larger value of the corre-
sponding variable.

Fig. 8(a) shows the general features and trends of groundwater
variations in different seasons as well as in various aquifers (verti-
cal analysis). The higher the RGL is, the bigger the circle (bubble) is.
Aquifer B has the biggest bubble indicated that Aquifer B received



(a)Groundwater 
(b)Rainfall 

(c)Flow 

Fig. 8. Topological maps of surface water and groundwater in four aquifers. A larger circle represents a higher value.
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more recharge quantity than the other aquifers and tended to be
more easily refilled. As we investigated the distribution of the tem-
poral topology after 2005 (Fig. 6(a)), the water level was gradually
brimmed to the top from summer to fall (neurons #16, #12, #8,
#4). When winter came, the water level slightly reduced (neurons
#4, #7, #11). The minimum water level occurred between winter
and spring (neurons #11, #10, #14). A sharp drawdown could be
observed from the outer ring to the inner ring in Aquifer B. The
water level in Aquifer A dropped to the lowest value. The water
level gradually increased again until summer returned (neurons
#14, #15, #16), wherein the inner ring was displaced by the outer
ring in Aquifer B.

The results indicated that rainfall and flow was highly corre-
lated and higher rainfall (as well as flow) occurred in summer
and fall, as presented in neurons #4, #8, #12 and #16. Besides,
rainfall significantly decreased from fall to winter. The groundwa-
ter levels in all layers only slightly reduced in fall, which might be
due to the recharge from upstream (mountain area) groundwater
outflow and/or river flow for replenishing underground aquifers.
The groundwater level in winter (neurons #7, #11, #10) still main-
tained in an average level even though there was no much rainfall
in this season. We also noticed that river flow still occurred in win-
ter which might mainly come from groundwater outflow. Even
though rainfall would slightly increase as spring arrived, the
groundwater level fell fromwinter to the next spring and the water
level in spring reached the lowest groundwater level (minimum
circle) in a year.

Based on the pattern analysis on the visualizing SOM maps, the
inter-relationships of groundwater among various aquifers can be
identified and the interactions between groundwater and surface
water can also be sketched. Uncertainty due to obscured spatial
characteristics of regional groundwater is a long-standing chal-
lenge issue for effective groundwater management. The SOM
approach presented here utilizes the pattern classification capabil-
ity of a neural network and its ability to learn from a large number
of data sets. The constructed feature maps not only can meaning-
fully present the spatio-temporal characteristics of regional
groundwater but also display its interaction with surface water.
This joint approach enables one to visibly quantify their uncer-
tainty inside the SOM, which provide regional features and useful
information for sustainable management of groundwater
resources. There is, however, a large variability in groundwater
residence time, including groundwater flow paths that discharge
groundwater into surface water. Consequently, it is still difficult
to quantify the groundwater recharge amount refilling aquifer
storage and the groundwater discharge amount releasing back to
surface water and becoming runoff based on the limited clusters
(ex. 16 clusters obtained in this study). A more sophisticate model-
ing technique with long-term comprehensive monitoring data sets,
such as daily (even hourly) data including regional groundwater
and rainfall data and a series of flow data along the river from
upstream to downstream, and hydrogeological features in the
study area might be necessary to precisely identify and/or estimate
the discharge and recharge amounts of groundwater.

As mentioned early, modeling complex groundwater systems to
simulate the dynamics of surface water–groundwater interactions
and/or assess the quantitative status of groundwater resources is
still a great challenging task. In this study, we implemented the
data-driven techniques for configuring the SOM feature map
through decomposing the large high-dimensional 30-day moving
average RGL data sets that could help to better understand how
the spatio-temporal characteristics of 126 groundwater sensors
and the multi-relations among hydrological variables. We designed
a number of figures to display and explore the complex dynamic
temporal-spatial groundwater and surface water characteristics,
where Fig. 6 displayed the temporal distribution of each neuron
and seasonal changes between neurons, Fig. 7 shown the clustered
RGL topological maps of four aquifers in the Pingtung Plain, and
Fig. 8 presented the 2-D bubble topological maps of surface water
and RGL in four aquifers, which integrated all the information in all
the clustered neuron to explore their complex dynamic temporal-
spatial characteristics and discover the regional groundwater vari-
ations in various aquifers.
5. Conclusions

In this study, we conducted a study to explore the complex
spatial-temporal groundwater features and multi-relations among
hydrological variables in the Kuoping river basin based on a sys-
tematic combination of large (i.e. 6180) data sets of high-
dimensional groundwater levels (126 RGLs) in various aquifers,
rainfall and stream flow by using the data-driven techniques. Dis-
tinct patterns of regional groundwater characteristics and specific
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dominant hydrological attributes could be identified in the clusters
obtained from the nonlinear clustering techniques, the SOM, which
indicated the obtained clustering results were sound from the
hydrological point of view. The major findings based on the con-
structed topological maps of the SOM in the four aquifers of the
study area are summarized as follows.

1. Extracting the occurrence time of each 30-day moving average
data set in the clustered neurons of the SOM is a crucial step to
identify the spatio-temporal interaction between surface water
and groundwater.

2. The constructed topological maps clearly indicate that the fluc-
tuation of groundwater level decreases from east to west in the
Pingtung Plain, which re-confirms the permeability of the east-
ern area is much greater than that of the western area.

3. The water levels in four aquifers have different growth and
decline patterns in various seasons. The water level fluctuations
in Aquifers B and C are more significant than those of the other
two layers, which indicate those two layers can be more easily
replenished or drained out.

4. The regional water levels possess a seasonal cycle before and
after the 2005, respectively. They gradually increase from
spring to summer, dramatically increase to reach the maximum
in fall, then gradually decease from fall to the next spring, and
consequently reached the minimum in spring.

5. The designed ‘‘2-D Topological Bubble Map”, which summarizes
all the averaged RGL values of four aquifers and surface water in
a neuron, can visualize the major features of the RGLs in the
vertical direction, so that we could easily examine the inter-
relationships of groundwater among various aquifers and the
interactions between groundwater and surface water.

In sum, we classified the complex high-dimensional data sets
based on the topological maps to make a comprehensive analysis
of groundwater variations in four aquifers and present their
spatio-temporal features. The SOM results could visibly explore
the behavior of regional groundwater variations in various aqui-
fers, present the seasonal cycles in a temporal scale, and systemat-
ically classify the interactions between surface water and
groundwater, and obtain the spatio-temporal interrelation. We
thus conclude that the constructed feature maps are topologically
ordered in the sense that the spatial location of a neuron in the lat-
tice corresponds to the particular features of input patterns and
can meaningfully present the spatio-temporal characteristics of
regional groundwater and its interaction with surface water, which
provide useful elaboration for future groundwater management
plans.
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