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a b s t r a c t

The evolutionary algorithms can solve reservoir operation with a fast convergence rate whereas the
major impediments in handling the joint operation of mega cascade reservoirs easily trigger the tech-
nical bottlenecks, i.e. trapping into a local optimum, instability and loss of good solutions. This study
proposes a methodology that fuses three auxiliary strategies into the Kidney Algorithm (KA) to optimize
the hydropower output for conquering the bottlenecks in the KA concerning the joint operation of six
mega cascade reservoirs located in the Jin-Sha River basin in China. The proposed theme would
contribute to the application of the state-of-the-art evolutionary algorithms in boosting the cleaner
hydropower production of mega cascade reservoirs. The three auxiliary strategies are that: firstly, the
exploration and exploitation strategy is employed to stimulate the movement of solutions to surmount
technical drawback of trapping into a local optimum; secondly, the adaptive strategy is used to auto-
matically adjust algorithm parameter values to overcome the instability problem; lastly, the elitism
strategy is introduced to preserve the best solution at every epoch to avoid the loss of good solutions. Our
methodology, without expanding or upgrading hydraulic infrastructures, can increase the hydropower
production of the six mega cascade reservoirs by 7.8%, as compared with the standard operation policy.
The hydropower production can reach 4.8 billion kW$h/year, which can decrease 3.77 billion kg/year in
CO2 emission, and bring 217.44 million USD/year in hydropower benefits. The improved KA can
considerably increase the reliability and resilience of hydropower output as well as largely decrease the
vulnerability of hydropower output. The results suggest that our methodology can stimulate hydropower
output to yield more benefits regarding cleaner production, carbon emission reduction and
sustainability.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

Renewable energy spreads to a growing number of developing
and emerging economies. In some areas, renewable energy has
become a pivotal electricity source due to the rapid growth in the
population under urbanization. The ongoing growth in magnitude
and geographical expansion of renewable power capacity are
driven by the continuing decline in price for renewable energy
ater Resources and Hydro-
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technologies, by raising power demand in some countries and by
targeting renewable energy support mechanisms. Nowadays, most
new renewable energy power plants are installed in developing
countries, especially in China, which is the largest developer over
the past eight years. By the end of 2016, the top regions or countries
for total installed renewable energy capacity are China, Europe,
USA, India and Japan (Fig. 1 (a)). In 2016, the renewable energy
production estimated to reach 30% (2016.8 GW) of the world’s
generation capacity. This amount is enough to provide 24.5% of
global actual energy consumption. Among the renewable energy
sources, hydropower has a low mean power generation cost and
high generation stability (Global Status Report of renewable energy,
2017). Globally, hydropower provides 16.6% global energy con-
sumption (Fig.1 (b)), and this number exceeds 20% in China (REN21,
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Fig. 1. Global renewable energy capacity and production in 2016. a. Global renewable energy capacity of top regions/countries. b. Renewable energy share of global energy
production.
Notes: EU-28 consists of 28 European Countries. The data tracked 155 countries including Africa, Asia, Central America, the Caribbean, Eurasia, Europe, Middle East, North America,
Oceania, South America, China, India and the United States, covering 96% of global GDP and representing 96% of global population. (Extracted from the REN21 Renewables Global
Status Report, 2017).

Y. Zhou et al. / Journal of Cleaner Production 244 (2020) 1186132
2017). The hydropower will continue to grow (from 13% in 2000 to
19% in 2016) to compensate for the decline in thermal power pro-
duction (from 85% in 2000 to 73% in 2016). Compared with other
renewable energy sources, hydropower is flexible in electricity
generation and supply, and hence hydropower yields more social
benefits for energy economy (He et al., 2018), energy safety (Cheng
et al., 2018), carbon emission reduction (Hu et al., 2011; Dou, 2013)
and non-fossil energy expansion (Feng et al., 2018a, b). Besides,
many countries and regions are working to improve hydropower
infrastructure, operation and market design to facilitate hydro-
power output (Ehteram et al., 2017; Singh and Singal, 2017). To raise
cleaner production, our study is concentrated on probing into a
joint operation of mega cascade reservoirs to lift synergy of water-
energy nexus and significantly mitigate CO2 emission with the use
of Artificial Intelligence (AI)-based heuristic techniques.

Modernization and retrofitting of existing facilities continue to
be a vital part of hydropower operations, including the imple-
mentation of advanced AI technologies and data analytics for



Y. Zhou et al. / Journal of Cleaner Production 244 (2020) 118613 3
digitally enhanced hydropower generation (Singh and Singal, 2017;
Jha et al., 2017). In recent years, researchers are seeking to imitate
nature by evolutionary algorithms because the designs and abilities
of nature are tremendous (Fister et al., 2013; Molina et al., 2018),
and therefore nature is the best trainer for technology. Since the
two domains and fields (nature & technology) have a much
stronger connection and similarity, easy mapping is possible from
nature to technology in the real world. Evolutionary algorithms
inspired by nature mechanisms and used as a branch of AI tech-
niques for solving various optimization problems have evolved
rapidly over the last few decades (Maarouf et al., 2015; Allawi et al.,
2019). The evolutionary algorithms are derived from the activities
of physical or biological systems in the natural world. Some ex-
amples of evolutionary algorithms in the literature are listed in
Table 1. The Genetic Algorithm (GA) (Goldberg, 1989), Simulated
Annealing (SA) (Johnson et al., 1989), Particle Swarm Optimization
(PSO) (Kennedy and Eberhart, 1995), Harmony Search (HS) (Geem
et al., 2001), Ant Colony Optimization (ACO) (Bianchi et al., 2002),
Honey Bee Optimization (HBO) (Pham et al., 2005), Intelligent
Water Drops (IWD) (Hosseini, 2007), Cuckoo Search (CS) (Yang and
Deb, 2009), Bat Algorithm (BA) (Yang, 2010a), Firefly Algorithm (FA)
(Yang, 2010b), Black Hole (BH) (Hatamlou, 2013) and Kidney Al-
gorithm (KA) (Jaddi et al., 2017) have been widely applied to opti-
mizing hydropower stations (or cascade reservoirs) long term
operation and short term operation as well as to renewable energy
hybrid operation. For instance, Wang et al. (2018) proposed an
effective procedure to strengthen the hydropower scheme by
minimizing spillages in the cascade reservoirs short-term opera-
tion. Uen et al. (2018) developed a holistic scheme that integrated
the long-term and short-term reservoir operation for improving
the synergistic benefits of water-energy nexus. Ming et al. (2018a,
b) fused the CS algorithm into dynamic programming to optimize
the joint operation of large hydroephotovoltaic hybrid power
plants. Shen et al. (2019) combined evolutionary algorithm and
decision-making analysis to optimize the operation of interpro-
vincial hydropower System. In comparison to the above mentioned
evolutionary algorithms, the KA is introduced to optimize joint
operation of mega cascade reservoirs on the grounds that: firstly,
the KAwas introduced by Jaddi et al. (2017) as a successful state-of-
the-art optimization algorithm suitable for different engineering
applications versus the other algorithms (Ekinci et al., 2018; Jaddi
and Abdullah, 2018) in term of its computation speed, conver-
gence, stability, and secondly, a review of the available literature
indicates the KA has not been applied in mega cascade reservoirs
operation. KA’s application for the first time to a reservoir operation
made by Ehteram et al. (2018a, b). To the best of our knowledge,
although the KA can be used to solve the optimization of low
dimensional reservoir operation (e.g. one reservoir, 12 (months)
decision variables and 48 (¼ 12 months * 4 constraints) physical
Table 1
Examples of evolutionary algorithms in the literature.

Evolutionary algorithms Imitation

Genetic Algorithm (GA) Natural selection operator
Simulated Annealing (SA) Steel annealing process
Particle Swarm Optimization (PSO) Swarm behavior
Harmony Search (HS) Finding the harmony in mu
Ant Colony Optimization (ACO) Finding shortest path to th
Honey Bee Optimization (HBO) Food-foraging behavior of h
Intelligent Water Drops (IWD) Destination finding behavio
Cuckoo Search (CS) Reproduction behavior of t
Bat Algorithm (BA) Echolocation behavior of ba
Firefly Algorithm (FA) Flashing light emitted by fi

Black Hole (BH) Black hole phenomenon
Kidney Algorithm (KA) Kidney process in the hum
constraints at monthly time scale in a year), but its reliability and
practicality of solving the high dimensional cascade reservoirs
operation has not been explored. The major difficulties in handling
a large number of decision variables and constraints closely asso-
ciated with the optimization of cascade reservoirs operation and
non-convex objective function (Cheng et al., 2012). They easily
trigger the technical drawbacks, i.e. trapping into a local optimum,
loss of good solutions as well as the instability problem (or lack of
robustness) in evolutionary algorithms. Consequently, it is imper-
ative to conduct in-depth research on the KA for enhancing its
robustness of exploration and exploitation in solving the nonlinear
non-convex objective function and high dimensional optimization
operation of mega cascade reservoirs.

The main objective of this study is to promote the application of
the state-of-the-art evolutionary algorithms for improving the
cleaner hydropower production of mega cascade reservoirs. The
innovative nature of this study lies in fusing three auxiliary stra-
tegies into the KA to overcome its technical bottlenecks. The
improved KA is applied for optimizing the hydropower production
of six mega cascade reservoirs. This is the first time that the KA is
modified by using three auxiliary strategies and used to solve a
complex joint operation of mega cascade reservoirs. The explora-
tion is placed on two focuses. Firstly, the cascade reservoirs oper-
ation objective is defined as to maximize the hydropower
generation, which a penalty function is added to the objective
function to avoid violations of the guaranteed (or firm) power
output. Secondly, an improved KA with three auxiliary strategies is
employed to solve the optimization problem in a hierarchical
structure. The auxiliary strategies consist of: for the movement
operator and filtration operator, the exploration and exploitation
strategy is introduced to stimulate the movement of solutions, and
the adaptive strategy is used to adjust algorithm parameter values
respectively. Before reaching the maximum epoch or stopping
criterion, the elitism strategy is adopted for preserving the best
solution in every epoch. The six mega cascade reservoirs located at
the middle reach of Jin-Sha River in China are selected as a case
study to assess the applicability as well as reliability of the pro-
posed method.

This paper is organized into five sections. Section 2 introduces
the study area and data. Section 3 describes the framework of the
proposed method consisting of the joint operation model of mega
cascade reservoirs, the standard KA and the improved KA. Section 4
presents results and discussion on the methods in the study case.
Section 5 summarizes the results.
2. Study area and data

Effective management of hydropower stations is the key to the
sustainability of our energy sources of tomorrow. China has greatly
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endeavoured to make transit-oriented development of renewable
energy systems for fulfilling the pledge of carbon emission reduc-
tion and non-fossil energy expansion to 20% by 2030 or earlier. The
installed hydropower capacity of China reached 332 GW by the end
of 2016, which was attributed to the fast development of hydro-
power resources and the intensive construction of power grids
during the past three decades. Hydropower resources are concen-
trated mainly in south-western China while electricity loads occur
mainly around the Yangtze River Delta and the Pearl River Delta.
Being credited to the merits in nature, the Yangtze River basin
possesses the largest water and hydropower resources in China. A
total of 267 large reservoirs (more than 100millionm3 storage) and
1525 medium-scale reservoirs (more than 10 million m3 storage)
with hydropower plants have been built in the end of 2016, and
their total installed hydropower capacity is 200 GW, which ac-
counts for over 60% of the installed hydropower capacity (332 GW)
in China.

Jina-Sha River located at the upstream of Yangtze River pos-
sesses the largest hydropower potential in the 13 large hydropower
bases of China. The six mega cascade reservoirs have been con-
structed in the middle reach of Jin-Sha River (Fig. 2 (a)) and are the
pivotal hydropower bases for the China Southern Power Grid
(http://eng.csg.cn/home/index.html). The mega reservoir is defined
herein the reservoir with the total storage capacity greater than 100
million m3, the height of the dam more than 100m, and the
installed power capacity larger than 1000MW. The climate in Jin-
Sha River basin is the humid subtropical climate with the average
annual rainfall of 736mm, and the average annual runoff is 53
billion m3. The topography is high mountains with a large relief.
Thanks to the humid climate and mountainous topography, this
area has a high hydropower potential. The interannual variability of
rainfall is high, with 65% falls during flood season. The flood season
generally lasts from June to September. The mega cascade reser-
voirs which served as multiple purposes not only can generate
approximately 13.76 GW of hydropower (i.e. installed capacity) but
also can protect millions of downstream residents from flood
hazards. These mega cascade reservoirs have been managed to
meet electricity demands of domestic and industrial sectors, enable
hydropower generation, and carry out flood control operation. The
six cascade reservoirs have total reservoir storage of 7.14 billion m3

and total watershed area of 250 thousand km2 respectively. The
characteristic parameters of cascade reservoirs are listed in Table 2.

According to the Chinese Flood Control Act, reservoir water
levels generally are not allowed to exceed the top of the buffer pool
(see in Table 2) during flood season to provide adequate storage for
flood prevention. During the impoundment operation period in the
Jin-Sha River basin, the reservoir water level would be raised from
the top of buffer pool on August 1st to the top of conservation pool
(see in Table 2) by the end of October. If the reservoir water level is
below the top of the conservation pool by the end of October, the
water level rising would continue into November. From November
to the end of May in the following year, the reservoir water level
would generally be operated at the Zone I or II and it would be
lowered gradually through control of the reservoir water release,
which depends on the reservoir inflow (Zhou et al., 2014, 2015). As
shown in Fig. 2 (b), every reservoir authority has implemented the
current operation rule curves (i.e. the standard operation policy
(SOP)) to give guidance in hydropower generation (He et al., 2019).
The guidance is described as follows.

In Zone I (Power output<Guaranteed power output): the
reservoir water release is equal to the reservoir inflow if the
reservoir water level locates in the Zone I and the reservoir inflow is
less than or equal to the water consumption corresponding to
generating the guaranteed power output, otherwise the reservoir
water release is equal to the water consumption corresponding to
generating the guaranteed power output if the reservoir inflow is
larger than thewater consumption corresponding to generating the
guaranteed power output.

In Zone II (Guaranteed power output� Power
output<Maximum power output): the reservoir water release is
equal to the water consumption corresponding to generating the
guaranteed power output if the reservoir water level locates in the
Zone II.

In Zone III (Power output¼Maximum power output): the
reservoir would increase thewater release to decrease the reservoir
water level into Zone II in the next time step if the reservoir water
level locates in the Zone III at the current time step.

Data used in this study consist of a total 65 742 (¼ 365 days (or
366 days) * 30 years * 6 reservoirs) reservoir inflow datasets
collected in 30 hydrological years (June 1st-the next May 31st,
1988e2018) at a temporal scale of day. The cascade reservoirs
characteristics and inflow data are extracted from the Changjiang
Water Resources Commission in China (http://www.cjw.gov.cn/, in
Chinese). Three hydrological scenarios (dry, normal, wet) are
designed to assess the impacts of different reservoir inflows on the
hydropower output of cascade reservoirs.

3. Methods

This paper proposes an improved KA to optimize the hydro-
power generation of the cascade reservoirs by introducing three
auxiliary strategies. The improved KA can overcome the short-
comings of the standard KA encountered in the nonlinear and non-
convex objective function as well as the high dimensional optimi-
zation operation of the cascade reservoirs. Fig. 3 illustrates the ar-
chitectures of the hydropower generation model (Fig. 3 (a)), the
standard KA (Fig. 3 (b)) and the improved KA (Fig. 3 (c)). The
standard KA and GA served as the benchmark in this study. The
methods used in this study are briefly introduced as follows.

3.1. Problems formulation of mega cascade reservoirs operation

The optimization operation of the cascade reservoirs is
modelled for maximizing total hydropower generation equipped
with the penalty function to avoid violations of the guaranteed (or
firm) power output. The objective is to specify the optimal solution
to maximize energy generation during the operation period in
consideration of different operational and physical constraints. A
sketch of the variables used to define the objective function and
constraints is presented in Fig. 3 (a). The objective function is
defined to maximize hydropower generation:where HG is the
average annual hydropower generation of the cascade reservoirs. T
is the number of time-steps in a year. N is the number of years. M is
the number of reservoirs. Dt is the time-step. Pg is the guaranteed
(or firm) power output of the cascade reservoirs. q is the penalty
factor, inwhich the value of q is 1 on condition that the hydropower
output of the cascade reservoirs is less than the guaranteed power
output. Pj(t) is the output power of the jth reservoir at the tth time.
RTj(t) is the water release through the turbine of the jth reservoir at
the tth time. HjðtÞ is the hydraulic head difference between the
turbine intake and the last tank of the jth reservoir at the tth time.
hjðtÞ is the dimensionless efficiency coefficient of the jth reservoir
at the tth time and is a function fð,; ,Þ of the water release and
water head, in which the relation curve of efficiency coefficient
(hjðtÞ), water release (RTj(t)) and hydraulic head (HjðtÞ) can be
found in the technical manual of the turbine developed by the
manufacturers. r is the density of water. g is the gravity
acceleration.

Reservoir operation should obey physical constraints containing
the water balance equation, the hydraulic connection equation, the

http://eng.csg.cn/home/index.html
http://www.cjw.gov.cn/


Fig. 2. Investigative area of this study and Standard Operating Policy (SOP) using operation rule curve. a. Investigative area. b. Operation rule curve. LY is the Li-Yuan reservoir. AH is
the A-Hai reservoir. JAQ is the Jin-An-Qiao reservoir. LKK is the Long-Kai-Kou reservoir. LDL is the Lu-Di-La reservoir. GYY is the Guan-Yin-Yan reservoir.
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Table 2
Characteristic parameters of cascade reservoirs in the middle Jin-Sha River reach.

Reservoir Jin-Sha River Basin

LY AH JAQ LKK LDL GYY

Total storage capacity (Billion m3) 0.81 0.89 0.91 0.56 1.72 2.25
Top of buffer pool (m) 1605 1493.3 1410 1289 1212 1128.8
Top of conservation pool (m) 1618 1504 1418 1298 1223 1134
Installed power capacity (GW) 2.40 2.00 2.40 1.80 2.16 3.00
Minimum power capacity (GW) 0.41 0.29 0.50 0.33 0.43 0.57

Guaranteed power output (GW) of 6 cascade reservoirs 3.12

Flood season June 1st to September 30th
Non-flood season October 1st to the next May 31st
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feasible boundary of the water release, the hydropower output and
the reservoir water level. The mathematical formulations of these
constraints are given as follows:

Vjðtþ1Þ¼VjðtÞþ
"�

Ijðt þ 1Þ þ IjðtÞ
�

2
�
�
Rjðt þ 1Þ þ RjðtÞ

�
2

#
,Dt

(2)

Ijðtþ1Þ¼Rj�1ðtþ1Þ þ IFjðtþ1Þ (3)

RjðtÞ¼RTjðtÞ þ RSjðtÞ (4a)

Rmin
j �RjðtÞ � Rmax

j (4b)

Pmin
j �PjðtÞ � Pmax

j (5)

Wmin
j �WjðtÞ � Wmax

j (6)

where VjðtÞ, Ij(t) and Rj(t) are the water volume, inflow and water
release of the j-th reservoir at the t-th time, respectively. IFjðtþ1Þ is
the streamflow of the intermediate catchment between the (j-1)-th
reservoir and the j-th reservoir at the (tþ1)-th time. RSj(t) is the
water released through the spillway of the j-th reservoir at the t-th
time. Rmin

j and Rmax
j are the minimum and maximum water re-

leases of the j-th reservoir, respectively. Pmin
j and Pmax

j are the
minimum and maximum power outputs of the j-th reservoir,
respectively. Wj(t) is the water level of the j-th reservoir at the t-th
time. Wmin

j andWmax
j are the minimum andmaximumwater levels

of the j-th reservoir, respectively. The variables of the above
equations are non-negative.

In this study, the Wmin
j is equal to the top of the inactive pool in

both the flood season and non-flood season whereas the Wmax
j is

equal to the top of the buffer pool in the flood season and the top of
the conservation pool in the non-flood season respectively (Fig. 2
(b) and Table 2). Eqs. (2) and (3) are the water balance equation
and hydraulic connection equation respectively. Eqs. (4)e(6) show
the constraints of water release, hydropower output and reservoir
water level respectively. Furthermore, the water releases of the
cascade reservoirs are selected as the decision variables of the
optimization model.
3.2. Kidney algorithm (KA)

The KA proposed by Jaddi et al. (2017) has been found a quite
successful state-of-the-art optimization algorithm suitable for
tacking a wide variety of engineering applications, (e.g., Ekinci
et al., 2018; Jaddi and Abdullah, 2018). As known, the kidneys
play a vital role in filtering blood in the body. They filter blood to
repel additional materials and surplus water from the body and
blood present.

There are parts in the structure of kidneys which are called
nephrons. Each kidney contains millions of nephrons. Every
nephron is considered as a filtration unit. Kidneys manipulate
following the four processes, i.e., filtration, reabsorption, secretion,
and excretion. According to the analogy between the KA and the
kidney biological system, Fig. 3 (b) shows the flow diagram of the
KA optimizing process. The implementation procedure is briefly
described as follows:

Step 1: Initialization of feasible solutions and implementation of
objective function evaluation. In a population of solutes, each
solute within the blood present is taken as a candidate solution
in the population of the algorithm. It is noted that each solute
(or solution) is used to code the decision variables, i.e., the water
release of the reservoir. For this study, real coded solutions are
adopted, and then the objective function evaluation is imple-
mented for each solution as well as ranking their values ac-
cording to the descending sequence.
Step 2: Movement of Solutes (S). The movement operator is a
process that the new solution (or solute) is produced through
attempting to move a current solution toward the best solution
based on the results of the objective function evaluation (Step
1), formulated as below:

Siþ1 ¼ Si þ randðSbest � SiÞ (7)

where Si is the solution in the population of the KA at the i-th
epoch. Sbest is the best solution at the current epoch. The value of
rand is a random number between 0 and a given number (such as
(Sbest � Si)).

Step 3: Filtration. The filtration operator is a process that the
solutions in the population are filtered using a filtration rate
through calculating a filtration function at each epoch. The fil-
trated solutes are moved to Filtrated Blood (FB) and the rest are
transferred to Waste (W). In other words, if the objective func-
tion value of a solution is large than or equal to a filtration rate
(fr), the solution will be transferred to a part of FB. Otherwise, it
will be moved to a part of W. The filtration rate fr is formulated
as below:

fr¼a�
PNp

i¼1f ðxiÞ
Np

(8)

where fr is the rate of filtration. a is the filtration coefficient (con-
stant number) in the range of (0, 1]. f ðxiÞ is the objective function of
solution x at ith epoch. Np is the population size.



Fig. 3. Framework of optimization hydropower generation of mega cascade reservoirs. a. Hydropower generation model. b. Optimization technique: Kidney Algorithm (KA). c.
Optimization technique: Improved KA.
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Step 4: Reabsorption. The reabsorption operator is a process that
the solutions of W would be given a chance to turn into part of
FB, owing to executing the movement operator (Eq. (7)) again,
on condition that it meets the requirement of the filtration rate
and then would be transferred to a member of FB.
Step 5: Secretion. The process of secretion is for the solutions,
which have been moved to a part of FB after reabsorption. If one
of the mentioned solutions has a lower quality as compared
with the worst solution in FB, it would be secreted from the
blood current and is classified as a part ofW. Otherwise, it would
be reserved in FB as well as the worst solution in FB is secreted
and is turned into a part of W.
Step 6: Excretion. The excretion operator is a process that the
solutions in W excreted if they cannot meet the requirement of
the filtration rate for becoming a part of FB after implementation
of reabsorption for them. Meanwhile, these solutions would be
excreted on condition that they do not have the capability for
turning into a part of FB after conducting movement operator
twice. Under this circumstance, such a solution in W would be
substituted by a random solution. Before moving toward the
next epoch, the excretion is used to update the Sbest, merges W
and FB solutions, while recalculating the filtration rate. Termi-
nate the computation process subject to the stopping criteria
(early stopping or the maximal epoch Emax). In the case of the
maximization hydropower generation problem, if the value of
the objective function does not increase over 100 consecutive
epochs, hydropower generation can no longer be enhanced,
which triggers the computation to stop. If the epoch number is
less than the maximum epoch “Emax”, then repeat Steps 2e6.
Otherwise, stop and output the optimization results.

The parameters of the KA consist of the maximum epoch (Emax),
the population size (Np) and the filtration coefficient (a). The pa-
rameters of the KA could be obtained by using an intensive trial-
and-error procedure for producing converged results.

3.3. Improved KA

Despite the KA has been demonstrated its success in coping
with the reservoir optimization operation and other engineering
applications, the KA, similar to other evolutionary intelligent al-
gorithms, has the drawbacks of weak ability to identify the global
optimal solution, especially in complex high-dimensional cascade
reservoirs optimization operation with a non-convex function, a
huge number of constraints and decision variables. In other words,
the KA would demand auxiliary strategies to increase the perfor-
mance and flexibility to cope with complex and real-world opti-
mization problems. Therefore, to improve the ability to obtain the
HG¼maximize
1
N

XT,N
t¼1

�XM
j¼1

PjðtÞ� q ,
�XM

j¼1

PjðtÞ � Pg
�2�

,Dt

q¼
(
1; if

�XM
j¼1

PjðtÞ<Pg
�

0; else

PjðtÞ¼hjðtÞ ,r , g ,RTjðtÞ,HjðtÞ

hjðtÞ¼f
�
RTjðtÞ;HjðtÞ

�

global optimal solution, three auxiliary strategies, i.e., the explo-
ration and exploitation strategy for stimulating global optimization
ability, the adaptive strategy for adjusting filtration coefficient and
the elitist strategy for storing best solution, are fused into the
standard KA in this study. The three strategies were briefly
described as below.

3.3.1. Exploration and exploitation strategy for stimulating global
optimization ability

It is worth noting that Eq. (7) could not offer a high diversity of
solutions for promoting the global exploration capability and local
exploitation ability, because the solutions only varied based on the
current solution (Si) and the best solution (Sbest). Bearing this in
mind as a motivation, the exploration and exploitation strategy is
accordingly applied to stimulate the movement of solutions (or
maneuver of solutions). One makes use of the current solution and
a weighted difference between the best solution and random so-
lutions to boost the global exploration ability. Another makes use of
the best solution and a weighted difference between the current
solution and random solutions to facilitate the local exploitation
capability. The proposed exploration and exploitation strategy is
formulated as below.

Global exploration strategy

Sglobal ¼ Sbest þ b , randðjSi � SFBjÞ þ ð1�bÞ,randðjSi � SWjÞ
(9a)

Local exploitation strategy

Slocal ¼ Si þb , randðSbest � SFBÞþ ð1�bÞ,randðSbest � SWÞ
(9b)

Combination of exploration and exploitation strategy

Siþ1 ¼g ,max
�
Sglobal; Slocal

�
þð1�gÞ,min

�
Sglobal; Slocal

�
(9c)

where Sglobal and Slocal are the solutions raised by the exploration
and exploitation strategy, respectively. b and g are the random
numbers in the range of (0, 1). SFB and SW are the random solutions
in the part of FB and W, respectively, in which SFBsSisSW. In
comparison to Eq. (7), Eq. (9) (a) can be useful for global exploration
by taking full advantage of the information difference between the
best solution and the random solutions of FB&W, whilst Eq. (9) (b)
can be beneficial to local exploitation by making full use of the
information difference between the current solution and the
random solutions of FB & W. That is to say, the combination of
exploration and exploitation strategy (Eq. (9) (c)) not only can be
(1a)

(1b)

(1c)

(1d)
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applied to direct at the avoidance of low diversity and trapping into
a local optimum but also can make a suitable tradeoff between the
exploration and exploitation within the search domain for
achieving the global optimum.
3.3.2. Adaptive strategy for adjusting filtration coefficient
It is also worth noting that the filtration coefficient (a) of the

standard KA in Eq. (8) is a constant value in the range of (0, 1],
which is given in advance. In general, the constant parameter
values have a substantial impact on the quality of the solutions and
the robustness of evolutionary algorithm (Srinivas and Patnaik,
1994; Molina et al., 2018). Additionally, the selection of appro-
priate parameter values is usually resolved by the trial-and-error
procedure and demands the developers and users’ prior knowl-
edge, inwhich the process is time-consuming due to the sensitivity
analysis of adjusting algorithm parameters. To conquer such tech-
nical bottleneck, the adaptive strategy for adjusting algorithm
parameter values were adopted by a variety of researches and was
widely used to enhance the quality of the solutions and the
robustness of evolutionary algorithms (e.g., Zhang et al., 2007;
Zhou et al., 2017). Owing to its reliability and wide practicality, the
adaptive strategy for adjusting filtration coefficient is also inte-
grated into the KA in this study and is formulated as below:

a¼
(
ε1,

h
ðf ðSbestÞ � f ðSFBÞÞ

.�
f ðSbestÞ � favg

�i
; if ðf ðSFBÞ � favg

�
ε2; otherwise

(10a)

favg ¼
PNp

i¼1f ðxiÞ
Np

(10b)

where ε1 and ε2 are the random numbers in the range of (0, 1]. favg
is the average value of the objective function in the KA. f ðSFBÞ and
f ðSbestÞ are the objective function values of the random solution in
the FB and the best solution, respectively.
3.3.3. Elitist strategy for storing best solution
The concept of elitism proposed by Goldberg (1989) intends to

avoid the algorithm getting stuck in local optimal solutions, and the
elitist strategy has been widely adopted for improving the perfor-
mance of the evolutionary algorithms, for instance, GA (Goldberg,
1989; Wardlaw and Sharif, 1999), NSGA-II (Deb et al., 2002), PSO
(Bai et al., 2017) and BA (Bora et al., 2012). Eq. (9) could provide the
KA with a high diversity of solutions, whereas both Eqs. (7) and (9)
could not guarantee that the good solutions would not be discarded
even if they have been found before reaching the maximum epoch.
Therefore, in this study, if the solution created in the previous
epoch (Si-1) is not better than the current solution (Si), the elitist
strategy will be used with a certain probability. Inspired by the
concept of elitism, the proposed strategy employs the best solution
(Sbest) and a difference between the current and random solutions
(Sglobal, shown in Eq. (9) (a)) for lifting the performance of the KA to
prevent the loss of good solutions once they are found, which is
formulated as below:

In the case of maximization problem:

Si ¼
8<
:

Si; if ðf ðSiÞ � f ðSi�1ÞÞ
Sglobal; else if ðf ðSiÞ< f ðSi�1Þ and b<0:5Þ

Si�1; otherwise
(11a)

In the case of minimization problem:
Si ¼
8<
:

Si; if ðf ðSiÞ � f ðSi�1ÞÞ
Sglobal; else if ðf ðSiÞ> f ðSi�1Þ and b<0:5Þ

Si�1; otherwise
(11b)

where f ðSiÞ is the value of objective function of the solution at the
ith epoch. Eq. (10) equipped with the elitist strategy can be used to
avoid the loss of good solutions. That is to say, the good solutions
would be stored when they have been found before meeting the
requirement of the maximum epoch.

The following section describes how to fuse the three auxiliary
strategies into the standard KA for optimizing the cascade reser-
voirs operation. Fig. 3 (c) shows the flow diagram of the improved
KA optimizing process. The implementation procedure is described
as follows.

Step 1: Initialization of feasible solutions and implementation of
objective function evaluation. Because none of the auxiliary
strategies has been implemented for this step, this process could
refer to the Step 1 in the standard KA.
Step 2: Movement of Solutions (or maneuver of Solutions) (S)
using the exploration and exploitation strategy. According to the
rankings of the objective function (Step 1), the improved
movement operator (Eq. (9)) would be conducted to promote
the movement of S.
Step 3: Filtration using adaptive strategy. The improved filtra-
tion operator (Eq. (10)) will be implemented for dividing the S
into the two parts of the FB and W.
Step 4: Reabsorption. The reabsorption operator would be
executed to render an opportunity for the solutions of W
transferring into a part of FB if it satisfies the condition of the
filtration rate. And then the improved movement operator (Eq.
(9)) would be run once again in this procedure. That is to say, the
course of the reabsorption can also be enhanced due to the
improved movement of S.
Step 5: Secretion. This process can refer to the Step 5 in the
standard KA.
Step 6: Excretion and implementation of the elitist strategy. The
excretion operator would also be carried out if the solutions in
W cannot meet the requirement of the filtration rate for
becoming a part of FB. In addition, the elitist strategy (Eq. (11))
would be conducted to store the best solution. Terminate the
computation process subject to the stopping criteria (early
stopping or the maximal epoch Emax). For the maximization
hydropower generation problem, when the value of the objec-
tive function does not increase over 100 consecutive epochs,
hydropower generation can no longer be improved, which in-
duces the computation to stop. When the maximum epoch
“Emax” is reached, the computation process stops and outputs
the optimization results. Otherwise, update the epoch and
repeat Steps 2e6.

As compared with the standard KA, the merits of the improved
KA consist of: firstly, in Step 2, the combination of exploration and
exploitation strategy (Eq. (9) (c)) not only can conquer the bottle-
necks of low diversity and trapping into a local optimum but also
can make an adequate balance between the exploration and
exploitation for searching the global optimum; secondly, in Step 3,
the adaptive strategy is utilized for adjusting the filtration coeffi-
cient parameter to overcome the time-consuming encountered in
the trial-and-error procedure (or sensitivity analysis) of selecting
appropriate parameter values; lastly, in Step 6, the elitist strategy is
used to avoid the loss of good solutions before reaching up to the
maximum epoch.



Fig. 4. Sensitive to optimization algorithm parameters and optimization progress us-
ing the population size (Np¼ 500) and maximum epoch (Emax¼ 1000). a. Sensitive to
the crossover (Pc) and mutation (Pm) probability of GA. b. Sensitive to the filtration
coefficient (a) of KA. c. Optimization progress in GA using the most appropriate pa-
rameters (Pc¼ 0.85, Pm¼ 0.10, Np¼ 500 & Emax¼ 1000) and KA using the most
appropriate parameters (a ¼ 0:35, Np¼ 500 & Emax¼ 1000). The computation result is
the average result of 10 runs of each algorithm and the objective function value is
normalized between 0 up to 1.
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4. Results and discussion

The results and findings are presented and discussed in details
in the order of three parts: the sensitivity analysis of evolutionary
algorithm parameters (GA served as the benchmark) as well as the
comparison between the KA and the improved KA (KA served as the
benchmark), and the summarization, shown as follows.

4.1. Sensitivity analysis of GA and KA parameters

In this section, special attention is paid to the extension of the KA
to the optimization ofmega cascade reservoirs at a time scale of day.
The GA serves as a benchmark. And the parameters of the GA consist
of the population size (Np), the maximum epoch (Emax), the cross-
over probability (Pc) and the mutation probability (Pm). The sensi-
tivity analysis of evolutionaryalgorithmparameters is conducted for
the optimization operation of the six cascade reservoirs in the Jin-
Sha River basin (Fig. 2). Each evolutionary algorithm is driven by a
total of 65742 (¼ 365 days (or 366 days) * 30 years * 6 reservoirs)
datasets, which means we have 65742 decision variables and
262968 constraints (¼ 4 equations * 65742 decision variables). For
theGA, various researches (e.g.,WardlawandSharif,1999;Deb et al.,
2002) have suggested that for complex cascade reservoirs system, a
larger value of Np is required to maintain the diversity in the pop-
ulation; a larger value of Emax is required to converge to a state at
which there are no changes in the objective function value over 100
generation; good performance can be achieved using a high value of
Pc and low value of Pm. For the KA, to obtain good performance, the
parameter of the filtration coefficient (a) is additionally advised to
use a medium-low value (Ehteram et al., 2018a, b). Therefore, on
condition that both the KA and GA used the same population size
(Np¼ 500) and maximum epoch (Emax¼ 1000), we concentrate on
the following sensitivityanalysis: for theGA, themost appropriatePc
andPmwould appear to be in the range of 0.75 up to0.95 and0.05 up
to 0.25 at an increasing step of 0.05, respectively; for the KA, the
most appropriate a would appear to be in the range of 0.25 up to
0.55 at an increasing step of 0.05.

The results of the sensitivity analysis of the GA and KA param-
eters are shown in Fig. 4. Fig. 4 (a) indicates a distinct peak in
performance at Pc¼ 0.85 as well as progressive deterioration in
performance as the value of Pc increases beyond this, whilst there is
a distinct peak in performance at Pm¼ 0.10 as well as progressive
deterioration in performance as the value of Pm increased beyond
this. That is to say, themost appropriate values of Pc and Pm are 0.85
and 0.10, respectively.

Fig. 4 (b) reveals that the best result (¼ 0.977) in the KA is
achieved with the value of a (¼ 0.35) using the population size
(Np¼ 500) and maximum epoch (Emax¼ 1000) whereas there is a
progressive deterioration in performance as the value of a
increased beyond this. It needs to take about 2.1 h and 1.3 h
computation time (mean of 10 runs of each evolutionary algorithm)
for the implementation of the GA and KA to optimize the operation
of the six cascade reservoirs, conducted by a DELL computer (Intel®
CoreTM i5, 7th Generation CPU @ 2.50 GHz, RAM 8GB and 1 TB
Hard Disk). That is to say, in each trial-and-error computation
process, it spends approximately 2.1 h for the GA to find the
appropriate parameters of Pc (or Pm) whereas it spends 1.3 h for the
KA to search the appropriate parameter of a. The most appropriate
parameters of the GA are set as: Np¼ 500; Emax¼ 1000; Pc¼ 0.85;
and Pm¼ 0.10. The most appropriate parameters of the KA are set
as: Np¼ 500; Emax¼ 1000; and a ¼ 0.35. Table 3 summarizes the
computation results of the evolutionary algorithms (GA & KA) in
terms of 10 runs of the GA and KA using the most appropriate
parameters. Firstly, from the standpoint of the final objective
function value (normalization), the KA produces much higher final
objective function values than the GA in terms of the best (0.981),
average (0.977) and worst (0.974) final objective function values. At
the same time, the standard deviation value of the final objective
function in KA is equal to 0.0027, which is noticeably smaller than
that (0.0042) of the GA. That means the robustness of the KA is
stronger than that of the GA. Secondly, from the standpoint of the



Table 3
Computation results of the evolutionary algorithms (GA & KA).

Number of runs Normalization final objective function value

KA GA

1 0.975 0.963
2 0.974 0.961
3 0.981 0.968
4 0.979 0.966
5 0.974 0.971
6 0.977 0.973
7 0.981 0.971
8 0.976 0.968
9 0.980 0.973
10 0.977 0.964

Mean 0.977 0.968
Best 0.981 0.973
Worst 0.974 0.961
Standard deviation 0.0027 0.0042

Mean of time cost (Hours) 1.3 2.1
Average annual hydropower generationa (Billion kW$h) 64.6 63.1

Average annual hydropower generation (Billion kW$h) using the SOPb 61.7

Most appropriate parameters Np¼ 500 Np¼ 500
Emax¼ 1000 Emax¼ 1000
a ¼ 0.35 Pc¼ 0.85

Pm¼ 0.10

Note: The daily data from June 1st 1988 up to May 31st 2018 (30 hydrological years) are used in this study.
a The hydropower generation is the average annual hydropower generation during 1988 and 2018 and is the average result of 10 runs of each algorithm.

b SOP is the Standard Operating Policy using operation rule curves.
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convergence speed, the number (mean¼ 406) of epoch attained
the convergence result is significantly less than that (mean¼ 561)
of the GA. Such results demonstrate fewer epochs for the KA are
required to search out the optimal solution (shown in Fig. 4 (c)).
Thirdly, from the standpoint of the hydropower generation, the
global optimal solution obtained from the KA can largely improve
hydropower generation by 2.9 billion kW$h/year and 1.5 billion
kW$h/year accordingly. In addition, the improved KA can achieve
64.6 kW$h/year hydropower generation (SOP, 61.7 billion kW$h/
year and GA, 63.1 billion kW$h/year). The improvement rates reach
4.7% and 2.4%, respectively. The reasons for the KA’s superior per-
formance than that of the GA consist of: firstly, the filtration
operator of the KA provides the algorithm with good exploitation
and fast convergence in comparison to the selection operator of the
GA; secondly, the movement and reabsorption operator of the KA
gives the algorithm a good diversity of solution and thus superior
exploration as compared with the crossover and mutation opera-
tors of the GA.

4.2. Comparison between KA and improved KA

In the case of six cascade reservoirs operation, the computation
results (average results of ten runs) of the four schemes concerning
the KA and improved KA are reported in Table 4. It is noted that:
firstly, the difference between KA0 and KA1 (using one auxiliary
strategy) is that the latter uses the exploration and exploitation
strategy whereas the former does not; secondly, the difference
between KA1 and KA2 (using two auxiliary strategies) is that the
latter adopts the adaptive strategy for adjusting filtration coeffi-
cient whereas the former does not; and lastly, the difference be-
tween KA2 and KA3 (using three auxiliary strategies) is that the
latter employs the elitist strategy for storing best solution whereas
the former does not.

4.2.1. Hydropower generation
The results in Table 4 indicate that: firstly, in comparison to the

SOP (61.7 billion kW$h/year), the improved KA1 can increase the
hydropower generation 3.39 billion kW$h/year (5.5% improve-
ment), owing to the exploration and exploitation strategy; sec-
ondly, the improved KA2 can lift the hydropower generation 3.89
billion kW$h/year (6.3% improvement), in the combination of the
exploration and exploitation strategy as well as the adaptive
strategy; lastly, the improved KA3 can enhance the hydropower
generation 4.81 billion kW$h/year (7.8% improvement) due to
integration of the three auxiliary strategies. As compared with the
KA0, the improved KA3 can promote the hydropower generation of
1.91 billion kW$h/year (3.0% improvement). That is to say, the use of
the three auxiliary strategies, the improved KA can dramatically
enhance the hydropower generation in virtue of finding the global
optimal solution. The average time cost (2.2 h) of the improved KA
is higher than the KA (1.3 h), whereas the improved KA can save a
lot of time searching appropriate algorithm parameter due to using
the adaptive strategy for adjusting the filtration coefficient. That is
to say, the improved KA not only can increase the hydropower
generation but also can conquer the time-consuming encountered
in the trial-and-error procedure (or sensitivity analysis) of selecting
appropriate parameter values, in comparison to the standard KA.

To show the merits of the improved KA, an assessment is con-
ducted on the results obtained from the convergence process of the
four schemes (KA0-KA3) for optimization operation of the six
cascade reservoirs (Fig. 5). The comparison between KA0 and KA1
(with one auxiliary strategy) shows that the final objective function
value (0.985) of the improved KA1 is considerably larger than that
(0.977) of the KA0. The combination of exploration and exploitation
strategy (Eq. (9) (c)) not only can boost solution diversity and
escape the trap of a local optimum but also can increase the
objective function (i.e. hydropower generation). Moreover, the
objective function values of the KA1 show more fluctuation than
those of KA0, which implies the KA1 would easily trigger optimi-
zation process instability problem due to the utilization of the
exploration and exploitation strategy.

The results indicate that the KA required more auxiliary stra-
tegies to handle its instability problem. The comparison between
KA1 and KA2 (with two auxiliary strategies) shows that the



Table 4
Computation results of the four schemes concerning the standard KA and improved KA.

Scheme KA0 KA1 KA2 KA3

Parameters Np 500 500 500 500
Emax 1000 1000 1000 1000
a 0.35 0.35 / /

Auxiliary strategy Exploration and exploitation strategy / Yes Yes Yes
Adaptive strategy / / Yes Yes
Elitist strategy / / / Yes

Number of objective function evaluations (Mean) 406 451 539 487
Mean of time cost (Hours) 1.3 1.5 1.8 1.6
Average annual hydropower generationa (Billion kW$h) 64.6 65.1 65.6 66.5
Average annual hydropower generation (Billion kW$h) using SOPb 61.7

Note: The computation result is the average result of 10 runs of each algorithm and daily data from June 1st 1988 up to May 31st 2018 (30 hydrological years) are used in this
study.
KA0: the optimization algorithm is the standard KA.
KA1: the optimization algorithm is the improved KA with one auxiliary strategy.
KA2: the optimization algorithm is the improved KA with two auxiliary strategies.
KA3: the optimization algorithm is the improved KA with three auxiliary strategies.

a Average annual hydropower generation is the mean of annual hydropower generated during 1988 and 2018.
b SOP is the Standard Operating Policy using operation rule curves.
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objective function values of the KA2 fluctuated less and are
moderately larger than those of the KA1, which demonstrates the
KA2 can overcome the instability in virtue of the adaptive strategy
for adjusting algorithm parameter values. The reason is that the
adaptive strategy can dynamically adjust the parameter values in
response to the higher solution diversity produced by the explo-
ration and exploitation strategy. The comparison between KA2 and
KA3 (with three auxiliary strategies) shows that the final objective
function value (0.996) of the KA3 is considerably larger than that
(0.987) of the KA2. The KA3 can converge faster and is more robust
as shown in Fig. 5 and Table 3. The faster convergence and better
robustness is the result of the good exploration and exploitation
provided by the integration of the three auxiliary strategies.

The comparative results demonstrate that the improved KA not
only best optimizes hydropower generation with fast convergence
as well as the most stable objective function curve, but also can
effectively conquer the shortcomings of trapping into local opti-
mums, instability and loss of good solutions. This is due to the
utilization of the exploration and exploitation strategy, the adaptive
strategy as well as the elitist strategy.

4.2.2. Reliability, vulnerability and resilience of hydropower output
A coherent set of evaluation criteria is used to distil the merits of

the improved KA to quantitatively assess the impacts and contri-
butions of the KAs on the hydropower generation in different pe-
riods (year-round, flood season, non-flood season) and hydrological
representative years (dry, normal, wet). The criteria are designed
for assessing the reliability, vulnerability and resilience of hydro-
power output (Hashimoto et al., 1982; Zhou et al., 2017). Their
formulations are given as follows.

Reliability of hydropower output: The reliability can be described
by the probability that a hydropower energy system remains in a
satisfactory state.

Reliability¼n�Pn
t¼1NTðtÞ
n

(12a)

NTðtÞ¼
(
1 if

�XM
i¼1

PiðtÞ<Pg
�

0 else

(12b)

where NTðtÞ is the number of time that total hydropower output is
less than the guaranteed power output of the cascade reservoirs at
the t-th time. n (¼N$T) is the total number of time steps in the
operation period.

Vulnerability of hydropower output: The vulnerability represents
the incompetence of a hydropower energy system to resist the ef-
fect of a hostile environment. It denotes the maximum ratio of
hydropower output deficiency to installed power capacity if once
occurs, shown as follows.

Vulnerability¼ max
1�t�n

VUðtÞ (13a)

VUðtÞ¼

8>><
>>:

Pg �
XM

i¼1
PiðtÞ

Pg
if
�XM

i¼1

PiðtÞ<Pg

!

0 else

(13b)

where VUðtÞ is the vulnerability of hydropower output at the t-th
time.

Resilience of hydropower output: The resilience describes how
quickly a hydropower system is likely to recover once hydropower
output deficiency has occurred, shown as follows.

Resilience¼

8><
>:

1 if ðReliability ¼ 1Þ
Xn�1

t¼1
REðtÞXn

t¼1
NTðtÞ

else
(14a)

REðtÞ¼
(
1 if

��XM
i¼1

PiðtÞ<Pg
�
and

�XM
i¼1

Piðt þ 1Þ � Pg
��

0 else

(14b)

where REðtÞ is the number of times that the hydropower energy
system is likely to recover from hydropower output deficiency at
the t-th time. The higher index value of reliability and resilience, as
well as the lower index value of vulnerability, indicate better model
performance.

The index values of reliability, vulnerability and resilience in
different scenarios are depicted in Table 5. From the standpoint of
different periods (year-round, flood season & non-flood season),
the results indicate that the improved KA can rapidly increase the



Fig. 5. Optimization progress in KA and improved KA. a. Comparison between KA0 and KA1. b. Comparison between KA1 and KA2. c. Comparison between KA2 and KA3.
KA0: the optimization algorithm is the standard KA.
KA1: the optimization algorithm is the improved KA with one auxiliary strategy.
KA2: the optimization algorithm is the improved KA with two auxiliary strategies.
KA3: the optimization algorithm is the improved KA with three auxiliary strategies.
The computation result is the average result of 10 runs of each algorithm and the objective function value is normalized between 0 up to 1.
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index values of reliability (from 0.95 to 0.98) and resilience (from
0.87 to 0.93), and decrease the index value of vulnerability (from
0.11 to 0.07) in the case of year-round, as compared with the
standard KA. Additionally, shown by the comparison with the SOP,
the improved KA not only can raise the reliability and resilience
with the improvement rates of 8.0% and 14.8% respectively but also
can dramatically reduce the vulnerability by 46.7% in the case of the
non-flood season. Such substantial improvement is mainly owing
to the good performance of the improved KA whilst the objective
function of maximization hydropower generation closely linked
with the guaranteed power output (Eq. (1)) also contributed to such
improvement. Some interesting characteristics in different periods
can be found in Table 5. For example, in all cases (SOP, KA &
improved KA), both the index values of reliability and resilience in
flood season are equal to one, while the index value of vulnerability
in flood season are equal to zero. In other words, in flood season,
the hydropower output of the six cascade reservoirs is always larger
than or equal to the guaranteed power output (3.12 GW, in Table 2).
Both the index values of resilience and vulnerability in the non-
flood season are equal to both the index values of resilience and



Table 5
Computation results of the KA and improved KA in the different scenarios.

Scheme Indicators Different periods

Year-rounda Flood seasonb Non-flood seasonc

SOP Reliability 0.92 1 0.88
Vulnerability 0.21 0 0.21
Resilience 0.81 1 0.81

KA Reliability 0.95 (3.3 %d) 1 0.92 (4.5%)
Vulnerability 0.11 (26.7%) 0 0.11 (26.7%)
Resilience 0.87 (7.4%) 1 0.87 (7.4%)

Improved KA (i.e. KA3) Reliability 0.98 (6.5%) 1 0.95 (8.0%)
Vulnerability 0.07 (46.7%) 0 0.07 (46.7%)
Resilience 0.93 (14.8%) 1 0.93 (14.8%)

Scheme Indicators Hydrological representative years

Drye Normalf Wetg

SOP Reliability 0.92 0.95 1
Vulnerability 0.34 0.22 0
Resilience 0.72 0.80 1

KA Reliability 0.95 (3.2%) 0.97 (2.1%) 1
Vulnerability 0.20 (41.2%) 0.14 (36.4%) 0
Resilience 0.79 (9.7%) 0.86 (7.5%) 1

Improved KA (i.e. KA3) Reliability 0.97 (5.4%) 0.99 (4.2%) 1
Vulnerability 0.15 (55.9%) 0.11 (50.0%) 0
Resilience 0.85 (18.1%) 0.92 (15.0%) 1

Note: The computation result is the average result of 10 runs of each algorithm and the daily data from June 1st 1988 up to May 31st 2018 (30 hydrological years) are used in
this study.

a Year-round is the hydrological year, starting from June 1st to the next May 31st in this study area.
b Flood season: starting from June 1st to September 30.
c Non-flood season: starting from October 1st to the next May 31st.

d Improvement rate ¼ jIndicatorðEvolutionary AlgorithmÞ � IndicatorðSOPÞj
IndicatorðSOPÞ � 100%

e Occurrence frequency of the dry year (2008) is 95% during 1988 and 2018.
f Occurrence frequency of the normal year (2003) is 50% during 1988 and 2018.
g Occurrence frequency of the wet year (2012) is 10% during 1988 and 2018.
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vulnerability in year-round. The index value of reliability in year-
round is always larger than the index value of reliability in non-
flood season. The reason is the ratio of runoff in flood season to
annual runoff ranges between 60% and 70% in this study area so
that the hydropower output deficit always occurred in the non-
flood season whereas both the reliability and resilience of hydro-
power output in flood season would reach up to 100%. In flood
season, the potential of hydropower generation is driven by less-
ening the gap between hydropower output and installed
(maximum) power capacity. However, in non-flood season, the
potential of hydropower generation is driven by lessening the gap
between hydropower output and guaranteed power output to
improve the hydropower generation.

Table 5 also shows the sensitivity of reliability, vulnerability and
resilience of hydropower output in response to the hydrological
representative years (dry, normal, wet). The results indicate that: as
compared with the SOP, the improved KA can noticeably increase
the reliability and resilience as well as decrease the vulnerability in
dry and normal years. The improvement rates of reliability (from
0.92 to 0.97, 5.4% improvement), vulnerability (from 0.34 to 0.15,
55.9% improvement) and resilience (from 0.72 to 0.85, 18.1%
improvement) are higher especially in dry year. In all cases (SOP, KA
& improved KA), both the index values of reliability and resilience
in the wet year (2012, 10% occurrence frequency during 1988 and
2018) are equal to 1, while the index value of vulnerability in the
wet year is equal to 0. In other words, in the wet year, the hydro-
power output of six cascade reservoirs is always larger than or
equal to the guaranteed power output (3.12 GW, in Table 2).

4.2.3. Reservoir operation curves
Take the first reservoir (LY, Fig. 2) and the last reservoir (GYY,

Fig. 2) of cascade reservoirs for example, Fig. 6 presents the
differences in the reservoir water level, water release and hydro-
power output trajectories generated by the KA and improved KA in
the scenario of the dry year (2008, 95% occurrence frequency
during 1988 and 2018). It can be further seen from Fig. 6 (a) that: for
flood season all the three trajectories are satisfied with the re-
quirements of their constraints whilst for non-flood season some-
times dissatisfied the hydropower constraint in which the total
hydropower output of two cascade reservoirs is less than the
guaranteed (minimum) power output. Despite the violation of the
constraint has occurred in both the KA and improved KA, the times
(1 time in both two cascade reservoirs) generated by the improved
KA is less than the times (2 times in both two cascade reservoirs)
generated by the KA in the scenario of the dry year (marked in red
circle).

For flood season, the differences in the three trajectories
generated by the standard KA and improved KA are small. The
reservoir water level and hydropower output generated by the
improved KA are slightly higher than that of the KA, whilst the
water releases generated by the improved KA are briefly smaller
than those of the KA in both two cascade reservoirs. For non-flood
season the differences in the three trajectories generated by the KA
and improved KA are considerable, in which the reservoir water
levels and hydropower outputs generated by the improved KA are
sharply higher than that of the KA whilst the water releases
generated by the improved KA are sharply smaller than that of the
KA in both 2 cascade reservoirs. In other words, for flood season the
differences in the three trajectories generated by the KA and
improved KA are small whereas for the non-flood season the dif-
ferences in the three trajectories generated by the KA and improved
KA are noticeable.

More interesting characteristic of the optimal hydropower
output can be found in this study, for example, most of hydropower



Fig. 6. Comparison of optimal trajectories generated by the KA and improved KA with respective to the LY and GYY reservoirs in a dry year (2008) as well as theoretical relationship
curves between power output, hydraulic head, and water consumption of a hydro unit (i.e., unit performance curves). a. Comparison of optimal trajectories. b. Hydro unit per-
formance curves.
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output trajectories generated by the improved KA are larger than or
equal to those of the KA whereas small minority of hydropower
output generated by the improved KA is less than that of the KA in
both 2 cascade reservoirs (marked in red rectangle). Therefore, the
improved KA can rapidly increase the reliability of hydropower
output in comparison to the KA. The difference in the hydropower
output trajectories can demonstrate the performance of the
improved KA is noticeably superior to the performance of the KA in
the interests of hydropower generation maximization, whereas the
differences in the reservoir water level or water release trajectories
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generated by the KA and improved KA does not necessarily indicate
the superiority of one approach over the other. The reason is that:
according to Eq. (1(c)), the value of hydropower output not only is
not only dependent on the values of the water release (RTj(t)) and
hydraulic head (HjðtÞ), but is also dependent on the value of effi-
ciency coefficient (hiðtÞ). The function fðRTjðtÞ;HjðtÞÞ (Eq. (1d)) is
not monotonically increasing with the values of the water release
(or water consumption) (RTj(t)) and hydraulic head (HjðtÞ) (Fig. 6
(b)).

In summary, these comparative results demonstrate that the
improved KA with three auxiliary strategies not only can produce
the largest objective function values and the most stable objective
function curve but also can effectively increase hydropower gen-
eration of mega cascade reservoirs. Such achievement made by the
KA3 could be owing to that the exploration and exploitation
strategy improved the hydropower generation from the perspec-
tive of tacking the technical bottleneck of trapping into local opti-
mums, the adaptive strategy improved the hydropower generation
from the perspective of conquering the instability of optimization
process, while the elitist strategy improved the hydropower gen-
eration from the perspective of overcoming the loss of good solu-
tions. Additionally, the indexes of reliability, vulnerability and
resilience are used to assess the KAs for different periods (year-
round, flood season, non-flood season) and different hydrological
representative years (dry, normal, wet) comprehensively.
Compared with the SOP, the improved KA can increase the index
values of reliability and resilience, and decrease the index value of
vulnerability in different periods (year-round & non-flood season)
and different hydrological representative years (dry year & normal
year). The improvement rates of reliability, resilience and vulner-
ability are higher especially in non-flood season and dry year. The
reason is that the probability of hydropower output deficit occur-
rence in the non-flood season and the dry year is higher than the
probability of deficit occurrence in the flood season, and the normal
& wet years. From the standpoint of hydropower benefits and CO2
emission reduction, according to the hydropower price in China
(45.3 USD/MW$h) and CO2 emission reduction for hydropower
production (0.785 kg CO2 equivalent/kW$h) (Zhou et al., 2018a,b),
in comparison to the SOP, the improved KA can dramatically
stimulate the hydropower benefits 217.44 million USD/year (¼ 4.8
billion kW$h * 45.3 USD/MW$h) as well as reduce the CO2 emission
3.77 billion kg/year (¼ 4.8 billion kW$h * 0.785 kg CO2 equivalent/
kW$h), respectively. To support the official mission e to fulfil the
pledge of carbon emission reduction and non-fossil energy
expansion to 20% in China by 2030 or earlier, this study indicates
the niche and potential of the hydroelectricity as a guideline for the
cleaner production.

In comparison to the dynamic programming methods, for
instance, discrete differential dynamic programming, progressive
optimality algorithm and dynamic programming successive
approximation, the major advantage of the KA approach is that it
does not demand the initial trial water release policy (Ehteram
et al., 2018a, b), which can motivate the robustness of the algo-
rithm and the stochasticity of solutions. As compared with the GA
and KA, the main merit of the improved KA is the capability to find
the global optimumwith faster convergence speed. The reasons are
as follows: firstly, the filtration operator provides the required
exploitation while the reabsorption operator gives the necessary
exploration for the evolutionary algorithm; the combination of
exploration and exploitation strategy not only can conquer the
bottlenecks of low diversity and trapping into a local optimum, but
also can make an adequate balance between the exploration and
exploitation for searching the global optimum; secondly, the
adaptive strategy can automatically adjust the filtration coefficient
parameter to overcome the time-consuming encountered in the
trial-and-error procedure of selecting appropriate parameter
values; lastly, the elitist strategy can avoid the loss of good solutions
before reaching up to the maximum epoch.

5. Conclusion

In China, the developing hydroelectricity can provide a reliable
and practical pathway in the transition to the low carbon and
cleaner production for sustainable development. The optimization
operation of mega cascade reservoirs can better produce hydro-
power outputs. However, the difficulty encountered in this process
raises quickly since the number of cascade reservoirs, decision
variables and constraints grow, inwhich the optimization process is
easy to give rise to time-consuming and loss of good solutions as
well as a trap into local optimum. In this study, we explored the KA
with three auxiliary strategies for stimulating the hydropower
output of cascade reservoirs. The standard KA, GA and SOP were
selected as the benchmark for the comparison analysis. The
improved KA was introduced to optimize the hydropower gener-
ation of six mega cascade reservoirs located at middle reach of Jin-
Sha River in China. The mathematical model is driven by a huge
number of inputs (i.e., 65742 inflow measurements and decision
variables) and constraints (i.e., 262968 conditions).

Here we show that there is a great potential for application of
the KAs to complexmega cascade reservoir operation. As compared
with the SOP, the KA and improved KA can increase the hydro-
power generation 2.9 billion kW$h/year (4.7% improvement) and
4.8 billion kW$h/year (7.8% improvement) while boost the hydro-
power benefits 131.37 million USD/year and 217.44 million USD/
year as well as decrease the CO2 emission 2.28 billion kg/year and
3.77 billion kg/year, respectively. Additionally, the improved KA can
increase the index values of reliability and resilience as well as
decrease the index value of vulnerability. The limitation of the KAs
is that if a multipurpose reservoir operation is taken into consid-
eration, it demands to reconstruct the optimization mechanism
from a single objective into multi-objective optimization to find the
Pareto-optimal solutions. Consequently, follow-up studies will fuse
the non-dominated sorting strategy and/or dynamically dimen-
sioned search into a Multi-objective Kidney Algorithm for opti-
mizing the multi-objective operation of cascade reservoirs.
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