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• Change of seasons brings obvious effects
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The complex mixtures of local emission sources and regional transportations of air pollutants make accurate
PM2.5 prediction a very challenging yet crucial task, especially under high pollution conditions. A symbolic rep-
resentation of spatio-temporal PM2.5 features is the key to effective air pollution regulatory plans that notify the
public to take necessary precautions against air pollution. The self-organizing map (SOM) can cluster high-
dimensional datasets to form ameaningful topologicalmap. This study implements the SOM to effectively extract
and clearly distinguish the spatio-temporal features of long-term regional PM2.5 concentrations in a visible two-
dimensional topological map. The spatial distribution of the configured topological map spans the long-term
datasets of 25 monitoring stations in northern Taiwan using the Kriging method, and the temporal behavior of
PM2.5 concentrations at various time scales (i.e., yearly, seasonal, and hourly) are explored in detail. Finally,
we establish a machine learning model to predict PM2.5 concentrations for high pollution events. The analytical
results indicate that: (1) highpopulation density and heavy traffic load correspond to high PM2.5 concentrations;
(2) the change of seasons brings obvious effects on PM2.5 concentration variation; and (3) the key input vari-
ables of the prediction model identified by the Gamma Test can improve model's reliability and accuracy for
multi-step-ahead PM2.5 prediction. The results demonstrated that machine learning techniques can skillfully
summarize and visibly present the clusted spatio-temporal PM2.5 features as well as improve air quality predic-
tion accuracy.
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1. Introduction

Due to urbanization, industrialization, human activities and climate
change in recent years, a large amount of suspended chemicals have di-
rectly or indirectly moved around Taiwan through atmospheric circula-
tion, causing poor air quality (Zhang et al., 2018; Zhou et al., 2019a,
2019b). There are many types of air pollutants, among which PM2.5
characterized by small particle size, large surface area, and strong activ-
ity could easily adsorb toxic substances (e.g., heavymetals andmicroor-
ganisms). PM2.5 not only has a long residence time in the atmosphere
but also transports over a long distance, causing great impacts on
human health and atmospheric environmental quality (Zheng et al.,
2016; Sosa et al., 2017; Yu et al., 2018). For instance, Nowak et al.
(2013)modeled tree effects on PM2.5 concentrations andhumanhealth
for 10 U.S. cities. Callén et al. (2014) carried out a source apportionment
of total polycyclic aromatic hydrocarbons by positive matrix factoriza-
tion in order to quantify potential pollution sources of polycyclic aro-
matic hydrocarbons. He et al. (2016) estimated the spatial distribution
of indicators addressing the humidity effect on East China using an
observation-based algorithm. Stingone et al. (2017) explored a data-
driven method to identify the relationship between air pollutant expo-
sure profiles and children's cognitive skills. Ji et al. (2018) analyzed the
socioeconomic factors of PM2.5 through quantitative assessment on
stochastic impacts by regression on population, affluence and technol-
ogy. PM2.5 concentrations greatly vary at a regional scale, depending
on the local emission sources as well as climatic and geographic vari-
ables (Perrone et al., 2013). Moreover, they are highly associated with
seasonal changes. For instance, Marchetti et al. (2019) reported
seasonal-dependent biological effects coupled with regional climate
variables and emission sources would finally result a high variability
in the physico-chemical features of the particulate matter pollution
and make the estimation and management of air quality a very chal-
lenging work. Therefore, investigating the emission sources and the
proliferation mechanisms that cause serious air pollution is essential
for effectively implementing air pollution mitigation strategies
(Timmermans et al., 2017; Salavati et al., 2018).

Air pollution exhibits a high degree of uncertainty because the
source of its generation and the mechanism of the proliferation process
are dynamic and complex. A precise classification and prediction of
PM2.5 concentrations is notably crucial to regulatory plans, which in-
form the public and restrain social activities when harmful events are
foreseen. For tacklingnonlinear problems,machine learning techniques,
such as artificial neural networks (ANNs), can effectively extract and
learn the spatio-temporal features from big datasets with complex rela-
tion between highly dimensional variables (Feng et al., 2015; Xu et al.,
2018; Park et al., 2019). Li et al. (2018) introduced a self-adaptive
neuro-fuzzy weighted extreme learning machine to predict air pollu-
tion concentration. Zhou et al. (2019a & b) explored multi-step-ahead
PM2.5 forecasting models using deep long short-term memory
(LSTM) and support vector machine (SVM) separately. Machine learn-
ing models can evaluate the characteristics of input data based on the
results of model output, saving time in computation and scenario simu-
lation. Zaman et al. (2017) and Alimissis et al. (2018) indicated that
ANN models performed better than multiple linear regression models
for air quality forecasting. Mishra et al. (2015) used a neuro-fuzzy
model to forecast PM2.5 during haze episodes. Foehn et al. (2018) de-
veloped a regression co-kriging approach to efficiently combine
weather radar data with rain gauge data. The complex nonlinear fea-
tures between variables can be explored and reserved if the results of
the machine learning model are used properly (Pisoni et al., 2009; Wu
and Li, 2013; Elangasinghe et al., 2014). Therefore, many studies have
been devoted to analyzing and exploring the main components of air
pollution (Aristodemou et al., 2018) and the consequences at areas suf-
fering from serious air pollution (Lanzaco et al., 2017; Orun et al., 2018).
For instance, Brokamp et al. (2015) indicated that personal exposure to
PM2.5 andmost of its elemental constituents were correlatedwith both
indoor and outdoor measurements significantly. Derwent et al. (2018)
utilized Monte Carlo sampling to quantify model output uncertainties
raised from global tropospheric ozone precursor emissions and from
ozone production as well as destruction in a global Lagrangian
chemistry-transportmodel. Zhao et al. (2018) suggested gross domestic
product (GDP), private cars and energy consumption were significant
positive factors for PM2.5 at five hotspots in China.

PM2.5 was legislated as an air pollutant in Taiwan in 2012. As
known, the spatio-temporal distribution and characteristics of PM2.5
involve complex natural and anthropogenic sources. The mixture of
local emission sources and regional transportation makes the control
and accurate prediction of PM2.5 a very challenging work. The purpose
of this study is to explore the features of urban air pollution and conduct
the spatio-temporal analysis based on the long term datasets collected
from a number of air quality monitoring stations in northern Taiwan.
Besides, a machine learning technique is used to make accurate multi-
step-ahead PM2.5 prediction. The results of this study can contribute
to extracting the spatio-temporal distributions and transport mecha-
nisms of PM2.5 features aswell as providing decisionmakers with valu-
able information including air quality control strategies and their risks
to human health. This paper is organized into five parts. The research
background is given at first, follow by the study area and materials,
and then themachine learningmethods used in this study. In the fourth
part, results are presented in a visual map and a discussion is given. Fi-
nally, we summarize the results and draw the important findings of the
spatio-temporal analysis on regional PM2.5 concentrations.

2. Study area and materials

The study area spanning 3678 km2 contains Keelung, Taipei, New
Taipei City, and Taoyuan in northern Taiwan. The population density
of northern Taiwan remains high, and Taipei, in particular, has the
highest population density in Taiwan. Daily transportation and com-
muting choices are quite diverse. The most common choices for public
transportation are mass rapid transit (MRT), bus, train, and high-
speed rail. Alternatively, motorcycles and automobiles are two major
vehicles contributing to a significant amount of urban air pollution. Air
pollution becomes more serious as the number of motorcycles and au-
tomobiles increases (Basagaña et al., 2018).

Fig. 1 shows the study area and the locations of 25 air quality moni-
toring stations established by the Taiwan Environmental Protection Ad-
ministration (TW_EPA). This study extracted from the open data source
of the TW_EPA a total of 87,674 hourly datasets collected at 25 air qual-
ity monitoring stations during 2008 and 2018. According to the types of
air qualitymonitoring stations defined by the TW_EPA, this study inves-
tigates 18 general stations, 4 traffic stations, 1 national park station, 1
background station, and 1 background and general station. Station in-
formation is given in Table 1. As shown, the national park station (#3)
has the lowest values ofmean and standard deviation among all the sta-
tions. Stations (e.g. #8, #9, #10, and #11) located in the centers of Taipei
and New Taipei City along the Danshui River, in general, have the
highestmeanvalues. StationDayuan (#21) locatedwithin the industrial
zone in Taoyuan has the maximum PM2.5 concentration (459 μg/m3).
Table 1 shows the 18 air quality/meteorological variables monitored at
the 25 stations, which are used for modeling PM2.5 concentrations in
this study.

3. Methodology

This study uses the SOM to configure the topologicalmap of regional
long-term PM2.5 concentrations for exploring the spatio-temporal rela-
tionship through a two-dimensional topological map. We carry out the
mining of the configured SOM topological map for exploring in-depth
interrelation of air quality, climate, and traffic conditions with PM2.5
concentration in the study area. Then, a non-linear method
(i.e., Gamma Test) is used to identify the key factors affecting PM2.5



Fig. 1. Study area and the locations of 25 air quality monitoring stations established by the Taiwan Environmental Protection Administration (TW_EPA).

Table 1
Basic information and statistics of PM2.5 concentrations at 25 air quality monitoring stations (2008–2018).

# Station Type Mean
(μg/m3)

Maximum
(μg/m3)

Standard deviation
(μg/m3)

1 Wanli Background and general 18.14 192 13.26
2 Keelung General 18.88 243 13.37
3 Yangming National park 12.64 199 11.51
4 Xizhi General 21.35 205 14.74
5 Danshui General 20.57 173 14.68
6 Shilin General 21.17 207 15.12
7 Songshan General 24.42 226 15.81
8 Zhongshan General 28.09 201 16.75
9 Datong Traffic 27.82 375 19.44
10 Cailiao General 23.34 310 16.44
11 Sanchong Traffic 28.26 201 17.79
12 Wanhua General 24.17 210 16.38
13 Guting General 23.70 194 16.41
14 Yonghe Traffic 23.88 184 16.60
15 Xindian General 20.60 185 15.03
16 Xinzhuang General 24.16 183 17.48
17 Banqiao General 24.18 189 17.07
18 Linkou General 22.90 203 15.81
19 Tucheng General 23.98 227 16.99
20 Taoyuan General 24.44 194 17.11
21 Dayuan General 24.73 459 17.54
22 Zhongli Traffic 26.21 212 17.29
23 Pingzhen General 22.78 208 16.09
24 Guanyin Background 23.65 241 16.30
25 Longtan General 22.47 178 15.34
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variation as inputs to a prediction model. Finally, an ANNmodel is built
to predict multi-step-ahead PM2.5 concentrations for high pollution
events, and the model's reliability and accuracy are evaluated. The re-
search framework is shown in Fig. 2, and relatedmethods are presented
as follows.
Fig. 2. Research framew
3.1. Self-organizing map (SOM)

Kohonen (1982) first proposed the SOM to explore the interrela-
tionships of high-dimensional multivariate systems. It is similar to
the concept of feature mapping in the biological cerebral cortex,
where similar information is integrated into similar clusters so that
the information can be processed efficiently (Faigl et al., 2011;
Serrien et al., 2018). The SOM that has been widely used in a broad
range of disciplines can effectively reduce the complexity of high-
ork of this study.
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dimensional systems and map high-dimensional input vectors onto
low-dimensional maps (Raza and Kim, 2008; Karaca and Camci,
2010; Newman and Cooper, 2010; Chang et al., 2014, 2016, 2020;
Han et al., 2016; Wu et al., 2017). Therefore, a large amount of infor-
mation can be stored in the weight values of the SOM's neurons,
where similar characteristics in input vectors can be found (Chang
et al., 2010; Heikkinen et al., 2011).

To establish an SOM topology, the size of the network is crucial and
must be determined atfirst because differentmap sizes represent differ-
ent degrees of data deviation. An SOMwith a small map size would fail
to effectively detect important features of data for clustering purpose
while an SOMwith a big map size would fail to adequately differentiate
the features between neurons (clusters). Nevertheless, to the best of our
knowledge, there is neither general theoretical principle to determine
the optimal map size nor common evaluation indicator to evaluate the
proximity between neurons. The shorter the distances of datasets
within each cluster and the longer the distances between cluster cen-
ters, the more distinct the clusters. Therefore, this study tried different
network sizes coupled with different numbers of iterations for present-
ing the most adequate topographical map of air pollution. The results
revealed that the network became stable after 2000 iterations, and
therefore 2000 iterations were determined for implementing the SOM.
The network size was next determined among 3*3, 4*4 and 5*5 by
trial and error in this study.

There are three schemes established by the SOM to efficiently ana-
lyze and visually present the spatio-temporal PM2.5 concentrations in
this study, introduced below.

3.1.1. Scheme 1: SOM configuration
An SOM network (e.g., 4*4) was configured based on large datasets

(i.e. 87,674) of PM2.5 concentrations at 25 monitoring stations in the
study area (Fig. 3(a)). For each neuron of the topological map shown
Fig. 3. Spatio-temporal analysis of PM2.5 concentrations at 25 m
in Fig. 3(b), the pie chart displays the number and the ratio of data clus-
tered in that neuron while the bar chart at the bottom presents the
PM2.5 concentration at each station.

3.1.2. Scheme 2: spatial analysis
The configured SOM topological map illustrates the two-

dimensional visualization of the spatial distribution of PM2.5 concentra-
tions, where the spatial distribution shown in each neuron spans the
point data at 25 stations using the Kriging method (Fig. 3(c)).

3.1.3. Scheme 3: spatio-temporal analysis
To clearly distinguish the temporal features of PM2.5 concentrations

of the configured SOM topological map, the temporal behaviors of
PM2.5 are extracted and presented at various time scales (Fig. 3(d)).
In each neuron, the bar chart, the pie chart and the three-tier bar display
PM2.5 concentrations at yearly, seasonal and daily scales, respectively.
Besides, the mean of PM2.5 concentrations in each neuron is indicated
with color according to the color indication of air quality standard de-
fined by the TW_EPA.

A detailed presentation and description about the three schemes is
given in the Results and discussion section.

3.2. Gamma Test

The Gamma Test first proposed by Koncar (1997) is an input selec-
tion technique that evaluates the extent to which a given input-output
dataset can be modeled by an unknown smooth nonlinear function
(Jones et al., 2007). Thus it has been frequently used to select the best
combination of inputs for the corresponding outputs (e.g., Noori et al.,
2010; Chang et al., 2014, 2015). For each subset of input variables, the
Gamma Test uses a smooth function to calculate the noise estimate (Γ
value) of the variance of model output that cannot be accounted for.
onitoring stations in the northern Taiwan using the SOM.
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The subset with its Γ value the closest to zero is determined as “the best
combination” of input variables. The Gamma Test is implemented to
identify non-trivial input variables for producing accurate outputs of
ANN-based models in this study.
3.3. Back propagation neural network (BPNN)

The purpose of an ANN is to build a prediction model based on in-
puts. A neural network is trained by the patterns between input and
output values. The BPNN can achieve predictions by mapping from
an n-dimensional space to an m-dimensional space, and its simple
structure, good accuracy and high operability makes it the most pop-
ular and commonly (frequently) used ANN in many fields. The BPNN
with sufficient hidden neurons is capable of producing an accurate
approximation of any continuous function through learning from
the samples fed to it (Kow et al., 2020). Besides, the BPNN can gener-
alize correct responses that widely resemble the data at the learning
stage. Therefore, the BPNN is utilized to construct the prediction
model in this study.
Fig. 4.Main features (number & ratio of datasets, PM2.5 at 2
3.4. Evaluation metrics

For PM2.5 prediction, it is very essential to know the performance of
a model when predicting high-magnitude data. Consequently, this
study utilizes three metrics to evaluate model accuracy and predictabil-
ity of PM2.5 concentrations, which are the Root Mean Square Error
(RMSE), the coefficient of determination (R2), and the Nash-Sutcliffe Ef-
ficiency coefficient (NSE, Nash, 1970). The formulae of the threemetrics
are expressed as follows.
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5 stations) in the configured 4*4 SOM topological map.
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where oi is the observed data, pi is the predicted value,o is the average of
the observed data, and N is the number of the observed data.

It is clear from the definitions of thesemetrics that amodel is consid-
ered to perform better if it has higher NSE and R2 values while lower
RMSE values than the other comparative model(s).

4. Results and discussion

We collected a total of 87,674 datasets of hourly PM2.5 concentra-
tions at 25 monitoring stations in northern Taiwan. The spatio-
temporal analysis of PM2.5 concentrations is conducted using the
SOM to classify the datasets into a visible topological map. The high pol-
lution events are further investigated tomakemulti-step-ahead predic-
tion of PM2.5 concentration using the BPNN model.

4.1. Spatio-temporal analysis of long-term regional PM2.5 concentrations

The SOM was used to classify the datasets into a visible topological
map. Various topological maps (e.g., 3*3, 4*4, and 5*5) of the SOM
were explored, and their suitability was evaluated. The main common
points of these three topological maps were two-fold. Firstly, it was ap-
parent that the lowest concentration occurred in the upper-left neuron
while the highest concentration occurred in the bottom-right neuron,
indicating all the three topological maps were well trained and mean-
ingful. Secondly, the comparative analysis showed that the 4*4 network
not only could explain the extrema of air quality distribution in more
detail than the 3*3 network but also could produce more distinct clus-
ters than the 5*5 network. The reasons were that air quality distribu-
tions in the 9 neurons of the 3*3 network failed to fully present the
deviation of total datasets whereas air quality distributions associated
with some of the neurons in the 5*5 network were not distinct from
one another. As a result, the 4*4 topology had the best performance, in
terms of suitability and interpretability of the constructed topology.
Therefore, 4*4 was determined as the map size the most suitable to
meaningfully interpret the PM2.5 data collected in this study. Fig. 4
shows the analytical results of the 4*4 topological map, including
(1) the number of datasets clustered in each neuron, (2) the ratio of
the datasets in each neuron to the total datasets (red part of the outer
circle), and (3) a bar chart of mean PM2.5 concentrations at 25 stations
arranged from left to right in representative of the station distribution
from northeast to southwest. Each neuron contains the information of
clustered datasets (e.g., the 1st neuron has 11,497 datasets while the
16th neuron contains 108 datasets). The topological map nicely illus-
trates the patterns of PM2.5 concentrations from the top-left corner to
the bottom-right corner, which expresses a significant increasing
trend of PM2.5 concentrations along the diagonal. The regional air qual-
ity, in general, is good because a large number of datasets with low
PM2.5 concentrations are clustered in upper-left neurons (for instance,
49.2% of total datasets are clustered into the1st, 2nd, 5th, and 6th neu-
rons), whereas only a few datasets with high PM2.5 concentration are
clustered into lower-right neurons (for instance, 0.1%, i.e., 108 datasets,
of total datasets are clustered in the 16th neuron). The results also pres-
ent that the national park station always has the lowest PM2.5 concen-
tration while traffic stations usually show high PM2.5 concentration in
each neuron.

To catch a picture of regional PM2.5 distribution, the Kriging spatial
interpolation method was applied to drawing a map of PM2.5 distribu-
tion in each neuron of the SOM. Fig. 5 shows the two-dimensional topo-
logical map of the configured SOM, where the weight values of each
neuron are transformed to obtain the spatial characteristic map of the
neuron using the Kriging method. It appears that the lowest and the
highest regional PM2.5 concentrations occur in the 1st and the 16th
neurons, respectively. Besides, regional PM2.5 concentrations gradually
increase from upper-left neurons (green) to lower-right neurons (red).
It is easy to tell that PM2.5 concentration is more serious (higher) in the
southwestern area (Taoyuan) than in the northwestern area (Keelung,
Taipei). Besides, PM2.5 concentration also appears more serious in
lower right neurons than the others.

Fig. 6 summaries the temporal features of regional PM2.5 concentra-
tions during 2007–2017 in the study area, including 1) the clustered
datasets in each neuron at three temporal scales (annual, seasonal,
and daily), 2) the ratio of data in eachneuron to the total data, and 3) av-
eraged PM2.5 concentrations in each neuron. According to the air qual-
ity index of the TW_EPA, it appears that the averaged PM2.5
concentrations (weights) of the 1st, 2nd, 3rd, 5th, and 6th neurons (ac-
counting for 52.4% of the entire datasets) are b20 μg/m3, leading to good
air quality (color indication: green, and yellow). In contrast, theweights
of the11th, 12th, 15th, and16th neurons (accounting for 8% of the entire
datasets) exceed 50 μg/m3, showing unhealthy air quality to human
health.

4.1.1. Annual perspective
According to thebar charts (yearly scale, 2008–2017) in eachneuron

shown in Fig. 6, it is easy to tell that PM2.5 concentrations were much
better (lower) during 2013–2017 than during 2008–2012. For those
neurons contained very high PM2.5 concentrations, e.g., the 8th, 11th,
12th, 15th, and 16th neurons, most of the data were recorded before
2012. On the other hand, most of datasets in the 1st and 2nd neurons,
which had the lowest averaged PM2.5 concentrations, were recorded
after 2012. The reason for such pollution mitigation could be the issu-
ance of an air quality control policy by the TW_EPA in 2012, which did
affect (mitigate) PM2.5 concentrations apparently.

4.1.2. Seasonal perspective
The results of seasonal variations clearly indicate that PM2.5 concen-

trations are significantly worse in spring and winter than in summer
and autumn, where spring and winter dominate lower-right neurons
(i.e., 11th, 12th, 15th, and 16th) while summer and autumn dominate
upper-left neurons (i.e., 1st, 2nd, 5th, and 6th). PM2.5 concentrations
in spring and winter could much exceed the PM2.5 standard (35 μg/
m3) set by the TW_EPA. Taking the 16th neuron that has the highest av-
eraged PM2.5 concentrations (126.8 μg/m3) as an example, it contains
datasets associated only with winter and spring. The significant sea-
sonal variations of the measured PM2.5 concentrations result from dif-
ferent pollution sources as well as climatic and meteorological
conditions, which suggests further controls of PM concentrations are
needed, especially in winter and spring. This results are consistent
with previous studies that declared the frequency of PM2.5 pollution
was the highest in spring and winter in Taiwan (Fu et al., 2014; Yang
et al., 2016). The background aerosol concentration was the highest in
cold seasons (late winter to early spring) in northern Taiwan, which
was significantly affected by the air-flow speed because high speed sur-
face winds corresponding to high air flows could transport the aerosol
from China to Taiwan. This could be that as cold high-pressure systems
originating from Siberia move southward, the peripheral circulation
usually transports the Asian haze to downstream areas, such as Korea,
Japan, and Taiwan (Zhang et al., 2015). A recent study also indicated
that high aerosol loadings observed over northern Taiwan could be as-
sociated with long-range transported dust particles and anthropogenic
pollutants from the Asian Continent as well as local anthropogenic
emissions (Hung et al., 2019). In contrast, air quality is better in summer
in Taiwan owing to better air diffusion conditions (Wu et al., 2019).
These seasonal patterns can be explained by the differences in the me-
teorological conditions and in the strength of the aerosol sources. Our
analytical results provide more evidences to support these findings.



Fig. 5. SOM topological map presenting the two-dimensional spatial distribution of PM2.5 concentrations in the study area.

8 F.-J. Chang et al. / Science of the Total Environment 736 (2020) 139656
4.1.3. Daily perspective
There are studies exploring the differences in PM2.5 concentra-

tions between day and night. For instance, Ye et al. (2017) presented
the day-to-night mass ratios of some selected chemical species in
PM2.5 and highlighted the dominant contribution of secondary pro-
cesses to the major aerosol components in Changzhou, China. Also,
Ge et al. (2017) indicated the enhancement of secondary aerosol for-
mation was likely a dominant cause for the increase of PM2.5 con-
centrations during daytime. Pérez-Ramírez et al. (2012) revealed
the increases of the fine mode radius and of the fine mode contribu-
tion to aerosol optical depth (AOD) during nighttime and explained
the variations by the changes of the local aerosol sources and by
the meteorological conditions between daytime and nighttime, as
well as aerosol aging processes.

To gain more insights into the changes in PM 2.5 concentration be-
tween day and night and to better understand regional PM2.5 pollutant
dynamics from ground-based observations, three time periods (i.e., 8-
hour period; 0–7, 8–15, 16–23) in a day are clearly illustrated and ana-
lyzed based on the long-term hourly monitoring datasets clustered by
the SOM. The results of the three-tier bar in each neuron could be sum-
marized as follows.

(1) Inconsistent patterns of the ratios corresponding to three periods
were observed between the neurons on the top (i.e., 1st, 2nd,
3rd, and 4th) and the neurons on the bottom (i.e., 13th, 14th,
15th, and 16th);

(2) For those neurons with the highest averaged PM2.5 concentra-
tions (i.e., 12th and 16th neurons), high concentrations occurred
more frequently during the period of 16–23 (from evening to
midnight) than during the period of 0–7 (midnight to early
morning); and

(3) For those neurons with the lowest averaged PM2.5 concentra-
tions (i.e., 1st and 2nd neurons), low concentrations occurred
most likely during the period of 0–7.

These results suggest that there may exhibit a relationship be-
tween PM2.5 concentration and human activities, while the



Fig. 6.Main features (ratio) of PM2.5 concentrations at yearly, seasonal and daily scales in each cluster (2008–2017).
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observed day-to-night inconsistency may also be caused by different
wind directions that transport air masses from local emission
sources during daytime and nighttime as well as by long-range
transported dust particles and anthropogenic pollutants from the
China. Thus, it is necessary to take a more comprehensively spatio-
temporal analysis coupled with human activities and emission
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sources to figure out the complex nonlinear air pollution
phenomena.

The analysis of the clustering results (i.e., the topological map) indi-
cate that the SOM can very effectively extract and visibly represent the
spatio-temporal features from the regional long-term daily monitoring
datasets. Besides, the SOM can assist in the skillful summarization and
visualization of the yearly trend, seasonal effect, and daily variation of
long-term regional PM2.5 distributions.
4.2. Prediction of high PM2.5 concentrations

According to the air quality standard defined by the TW_EPA, air
quality above 35 μg/m3 is unhealthy for sensitive populations. Thus,
we are more concerned about high-pollution events. According to the
SOM clustering results of PM2.5 concentrations, high pollution datasets
are clustered into the 8th, 11th, 12th, 14th, 15th, and 16th neurons, as
shown in Fig. 7. There are a total of 12,114 datasets in those neurons
(2008–2017).We next explore the causes of PM2.5 pollution and estab-
lish a predictionmodel, especially for those high PM2.5 events in recent
years (2015–2017). After further inspection, there were only 2040
datasets of 193 high PM2.5 events recorded during 2015–2017, ac-
counting for about 16.8% of the total (12,114) datasets of high pollution
events over 10 years (2008–2017). We notice that all the datasets clus-
tered in the 16th neuron (the highest averaged PM2.5 concentrations)
do not fall within the period of 2015–2017.
Fig. 7. Clustered neurons of SOM for high PM2.5 concentrations (brown color). (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 8. Statistics of the prolonged period of 193 h
Fig. 8 shows the number of occurrences of pollution events along the
prolonged period at anhourly scale for the 2040h (datasets) of 193 high
pollution events. We observed that most of the prolonged periods were
b12 h and only 8 events lasted for N24 h. We noticed from those high
pollution events that most of the northern Taiwan exposed to poor air
quality and the long-duration large-scale air pollution was caused
mainly by transboundary (overseas) air pollution. During those smog
periods, the northern Taiwan commonly suffered serious air pollution.

Fig. 9 shows the hourly PM2.5 concentrations at four different types
of air quality monitoring stations (Yangming, Dayuan, Yonghe, and
Zhongshan) for a long-duration high-pollution event that occurred dur-
ing 2016/2/5 23:00 and 2016/2/7 3:00, where the horizontal axis on the
top represents the neuron number of the constructed SOM. As shown,
the 12th neuron (purple color) had the highest averaged PM2.5 concen-
trationswhile the 15th neuron (red color) had the second-highest ones.
We noticed that the smog from China was notified to the public by the
TW_EPA on 2016/2/5, coincidingwith the occurrence of this high pollu-
tion event. In this high pollution incident, the peak concentration was
recorded from 14:00 to 17:00 on 2016/2/5 and the highest concentra-
tion that reached 121 μg/m3 appeared at Station Zhongshan.

Based on the occurrences of high-pollution events, we next assessed
the factors affecting PM2.5 concentrations for further investigation and
modeling. The Gamma Test was used to select the crucial variables for
modeling PM2.5 concentrations. The noise estimation values generated
by all possible input combinations were evaluated, and the input com-
bination that produced the smallest noise was selected as the optimal
input combination for the prediction model. The factors affecting
PM2.5 concentrations at different time horizons were also identified
to establish multi-step-ahead prediction models (i.e., T + 1, T + 4,
and T + 8) for PM2.5 concentrations. The results of factor selection
using the Gamma Test indicated that the important factors affecting
PM2.5 concentration were temperature, relative humidity, wind
speed, ozone and PM10 in general. Based on the Gamma Test results,
various BPNN models were constructed (denoted as Model 1), where
input variables consisted of the five selected factors and PM2.5 at the
current time. Fig. 10 shows the network architecture diagram of
Model 1. The data of high pollution events clustered in the 8th, 11th,
12th, 14th, and 15th neurons were used for model training and testing.
A total of 2720 datasets collected during 2015–2018 were used, where
2040 datasets (2015–2017) were for training and the remaining 680
datasets (2018) were for testing.

In practice, it is common to establish a prediction model with all
monitored variables as inputs based on full observational datasets.
Therefore, we also established a BPNN model with inputs of all the 18
variables (Table 2) monitored at 25 stations based on full observational
datasets, denoted asModel 2 (Fig. 11) serving as a benchmark. A total of
35,065 datasets collected during 2015 and 2018 were used, where
igh pollution events (2040 hourly datasets).



Fig. 9. Time series of a high PM2.5 concentration event occurred during 2016/2/5 23:00 and 2016/2/7 03:00 and the corresponding neurons of the constructed SOM at four stations in
northern Taiwan.

Fig. 10.Model 1 with BPNN architecture based on the Gamma Test results for multi-step-
ahead PM2.5 prediction.

Fig. 11. Model 2 with BPNN architecture based on all 18 input variables for multi-step-
ahead PM2.5 prediction.
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26,305 datasets (2015–2017) were for training and 8760 datasets
(2018) were for testing. We expected the ability of Model 2 in
predicting high pollution events would be inferior because the number
of data of high pollution events accounted for 7.8% of full observational
datasets only. Therefore, we particularly extracted fromModel 2 results
the predicted values of high pollution events, denoted as Model 2a, for
Table 2
Monitored variables at 25 air quality monitoring stations.

# Item Units

1 SO2 ppm
2 CO ppb
3 O3 ppm
4 PM10 μg/m3

5 PM2.5 μg/m3

6 NOx ppb
7 NO ppb
8 NO2 ppb
9 THC ppm
10 NMHC ppm
11 CH4 ppm
12 Temperature (TEMP) °C
13 Rainfall mm
14 Relative humidity (RH) %
15 Wind_Speed (WS, instantaneous value) m/s
16 Wind_Direct (WD, instantaneous value) Degrees
17 WS_HR (hourly average) m/s
18 WD_HR (hourly average) Degrees
comparison purpose. The performance of Models 1 and 2 is shown in
Table 3. It appears that the performances of the two models in both
training and testing cases dramatically decreases (much smaller R2

and NSE as well as much larger RMSE values) as the prediction horizon
increases. The results show that Model 2 has the best performances
(higher R2 and NSE as well as smaller RMSE values) in all the cases.
However, this is mainly because it uses a large number of datasets for
training and testing, where the great portion of small PM2.5 concentra-
tions significantly reduces RMSE values as well as increases R2 values.
Table 3
Comparison of PM2.5 prediction by Model 1 and Model 2.

Model Training (2015–2017) Testing (2018)

R2 RMSE NSEb R2 RMSE NSE

T + 1 (Model 1) 0.78 6.09 0.63 0.76 6.40 0.61
T + 1 (Model 2) 0.85 4.81 0.70 0.85 4.66 0.71
T + 1 (Model 2a) 0.72 6.52 0.61 0.68 7.23 0.56
T + 4 (Model 1) 0.36 10.57 0.36 0.32 10.42 0.37
T + 4 (Model 2) 0.58 7.75 0.51 0.58 7.55 0.52
T + 4 (Model 2a) 0.28 11.65 0.30 0.30 11.46 0.31
T + 8 (Model 1) 0.24 11.29 0.32 0.17 12.25 0.26
T + 8 (Model 2) 0.42 9.27 0.42 0.41 9.25 0.42
T + 8 (Model 2a) 0.16 13.40 0.19 0.11 14.32 0.14

a Results correspond to the predicted values of high pollution events only.
b Nash-Sutcliffe model efficiency coefficient.
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Not surprisingly, Model 2a is inferior to Model 2. Besides, Model 1, a
tailored-made model for high pollution events, indeed outperforms
(higher R2 and lower RMSE values) Model 2a in all the cases.

To further demonstrate the reliability and applicability of the con-
structed models, the multi-step-ahead prediction results of Model 1
and Model 2 together with the monitored PM2.5 concentrations (real
values) for a high pollution event recorded at Station Yonghe are
shown in Fig. 12. Fig. 12(a) shows that predictions obtained from both
models at T + 1 are quite close (small errors) to the real values. It is
worth noting that Model 1 (the yellow line) can predict the peak
value more accurately and its pattern is similar to the observed (real)
time serieswhileModel 2 (the gray line), however, has a delay phenom-
enon in prediction. Fig. 12(b) and (c) show that the prediction results of
the twomodels at T+4 and T+8domatch the observational trend but
fail to accurately predict high (peak) PM2.5 concentrations. Besides,
Fig. 12. Performance comparison of Model 1 and Model 2 at horizons T + 1, T + 4, and
T + 8 in the testing stages at Station Yonghe.
Model 2 in general underestimates PM2.5 concentrations and has larger
prediction errors than Model 1. As for the time to peak error of the
employedmodels shown in Fig. 12, the time shift of peak concentration
generally occurs for both models. For instance, there is a 1-hour delay
for Model 1 while 2-hour delay for Model 2 at T + 1. As for T + 8,
Model 1 has a 2-hour delay whereas Model 2 has a 10-hour delay.
Bothmodels under estimated peak concentrations in all the cases. How-
ever, Model 1 performs better than Model 2 at peak concentrations by
producing smaller prediction errors at all three horizons. Therefore, it
is worth establishing a specific prediction model during the occurrence
of each high pollution event, a crucial condition gaining much more
concerns.

5. Conclusions

This studyusedmachine learning techniques to explore the complex
spatio-temporal PM2.5 features based on a large number of high-
dimensional (25 stations) hourly monitored PM2.5 concentrations in
northern Taiwan. We demonstrated the SOM could skillfully encode
the high-dimensional structure into a two-dimensional feature map to
form a “topology” that could cluster similar features of regional PM2.5
concentrations in the constructed map to extract the complex spatio-
temporal PM2.5 features. The major findings based on the constructed
topology of the SOM are two-fold.

1) The spatio-temporal interrelationships of PM2.5 concentrations
could be visually displayed in the SOMneurons. The designed graphs
can effectively summarize all the averaged PM2.5 concentrations as-
sociated with 25 monitoring stations at various time scales in each
neuron of the constructed SOM. Therefore, we could explore the
yearly trend, seasonal effect, and daily variation of the regional
PM2.5 concentrations to visually examine the spatio-temporal inter-
relationships of PM2.5 concentrations among different monitoring
stations at various time scales.

2) In the SOM topological map, each cluster has its own spatial and
temporal relationships. The temporal behavior of PM2.5 concentra-
tions showed that the annual pollution trend did improve from
2007 to 2017, where most of the high pollution data were recorded
before 2012; seasonal variations indicated PM2.5 concentrations
were significantly worse in spring and winter than in summer and
autumn; and pollution variations for three dayparts (hours 0–7,
8–15, and 16–23) were related to human activities.

The high pollutant events clustered in the neurons of the SOMwere
further investigated to demonstrate their usefulness and benefit in
modeling multi-step-ahead PM2.5 prediction. Two BPNN models
(Model 1 with 6 key input variables, and Model 2 with 18 input vari-
ables) were established to predict PM2.5 concentrations at time hori-
zons T + 1, T + 4, and T + 8. The datasets of the high pollutant
events extracted from the SOM clustering results were used to train
and testModel 1.Model 2 served as a benchmark, where all the datasets
collected during 2015 and 2018 were used to train and test the model.
The results indicated Model 1 outperformed Model 2 in all the cases
based on high pollution datasets, which provided the extra usefulness
(benefit) of the SOM clustering results in modeling multi-step-ahead
PM2.5 prediction for high pollution events. We conclude that the SOM
results of the spatio-temporal analysis can offer the characteristics of
pollution variation from point to regional scales and pollution control
strategies can be formulated more effectively for specific regions, pro-
viding a useful reference for air pollution management.
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