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a b s t r a c t

Quantifying predictive uncertainty of ensemble air quality forecast is very crucial and challenging. This
study integrated a Copula-based Bayesian Model Averaging (CBMA) and multiple deterministic artificial
neural networks (ANNs) to make accurate ensemble probabilistic PM2.5 forecasts. The new approach
(CBMA), has a flexible structure that grants the posterior distribution to have any shape owing to the
Copula function. The CBMA approach could remove the data transformation and bias correction pro-
cedures as it is done in the original BMA, which was taken as the benchmark. The air quality in Taipei City
of Taiwan was selected as a study case to evaluate the applicability and reliability of the proposed
approach. Three kinds of air quality monitoring stations denoted heavy traffic loads, intensive com-
mercial trading and human intervention, and a natural circumstance with fewer human activities
respectively. The forecasts of PM2.5 concentrations were regarded as a math function involving meteo-
rological and air quality variables, using long-term (2010e2018) hourly observational datasets. Firstly,
four deterministic ANN models were established and evaluated to provide inputs for ensemble fore-
casting. Then, the two post-processing techniques (i.e. CBMA and BMA) were employed to produce
ensemble probabilistic forecasts based on the forecasts obtained from multiple ANN models. The results
demonstrated that the CBMA not only could outperform the BMA but also could provide a practical and
reliable approach as a complement to multiple deterministic ANN models to create ensemble probabi-
listic forecasts. From horizons tþ1 up to tþ4, the CBMA approach could drive up the Containing Ratio
(CR) values by 3.12% � 9.58% as well as reduce the average Relative Band-width (RB) values by 8.63% �
34.48% and the Continuous Ranked Probability Score (CRPS) values by 7.62% � 32.89%, in comparison
with the BMA one. Consequently, the predictive uncertainty could be alleviated while model reliability
and PM2.5 forecast accuracy could be considerably increased.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Suspended atmospheric particulate matter (e.g. PM2.5, aero-
dynamic diameter less than 2.5 mm) is one of main air pollutants
(Huang et al., 2014; Zhang et al., 2018). Natural sources and
anthropogenic sources transformation of precursor emissions in
the atmosphere such as SO2 to Sulphates and NOX to Nitrates
may also cause PM2.5 (Berardis and Eleonora, 2017; Van Fan et al.,
mental Systems Engineering,

Zhou), changfj@ntu.edu.tw
2018). The electricity generation process using overmuch fossil
fuels would produce plenty of precursor emissions and trigger air
pollution. The accurate and reliable air quality predictions can
provide technical guidelines for the trade-off between fossil fuels
energy and renewable energy outputs toward cleaner produc-
tion. Air quality predictions and environmental impacts of the
electricity generation process not only increase efficiencies in the
uses of energy but also are in the interest of cleaner production
in power industries (Han et al., 2019). It is essential to make
accurate and reliable air quality forecasts in advance to mitigate
environmental impacts and health risks. There is a noticeably
growing trend to move away from purely deterministic air
quality forecasting to probabilistic air quality forecasting (Krapu
and Borsuk, 2019; Zhang, 2017; Zhai and Chen, 2018). Some
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promising techniques (Table 1) have been used to quantify un-
certainties in air quality forecasts, for instance, (1) pre-
processing techniques: Fuzzy Clustering (FC) method, Wavelet
Transform (WT) and bias-correction method (Dunea et al., 2015;
Feng et al., 2015; Gong and Ordieres, 2016; Lohani et al., 2014;
Lyu et al., 2017; Monteiro et al., 2013) and (2) post-processing
techniques: Multiple Linear Regression (MLR), Kalman filtering,
Generalized Likelihood Uncertainty Estimation (GLUE), Bayesian
Uncertainty Processor (BUP) and Bayesian Model Averaging
(BMA) (Aznarte, 2017; Djalalova et al., 2015; Garner and
Thompson, 2013; Kaminska, 2018; Pucer et al., 2018; Zhai and
Chen, 2018). Ensemble forecasting techniques are commonly
used to characterize diverse uncertainties in air quality forecasts
(Bai et al., 2018; Thielen-del Pozo and Bruen, 2019). According to
the comparative analysis for various probabilistic forecasting
techniques (Table 1), the BMA, as one of the smart post-
processing methods, employed for weather firstly forecasting, is
being broadened to air quality modeling applications, which
exhibits ensemble forecasts’ advantage (Herr and Krzysztofowicz,
2015; Pucer et al., 2018; Krapu and Borsuk, 2019). Ensemble
forecasts with post-processing techniques are commonly used to
supplement the information provided by point-value determin-
istic predictions. Modular design, ensemble modeling and hy-
bridization with deterministic models are yielding new tools for
probabilistic air quality forecasting (Liu et al., 2019).

Any ensemble forecast approach relies upon model diversity
that different models produce, with specific emphasis and
different aspects of the features they want to model (Li et al.,
2013; Raftery et al., 2005). Artificial Neural Networks (ANNs)
used as data-driven methods to model air quality and meteoro-
logical systems have evolved rapidly over the last few decades
(Ryan, 2016; Shen et al., 2018). For instance, the Back Propagation
Neural Networks (BPNN), the Adaptive Neural Fuzzy Inference
System (ANFIS), the Random Forest (RF), the Quantile Regression
Neural Networks (QRNN), the Radial Basis Function (RBF), the
Extreme Learning Machine (ELM), the Non-linear AutoRegressive
with eXogenous inputs neural network (NARX), the Support
Vector Machine (SVM) and the Long-Short Term Memory (LSTM)
have been widely used to model air quality and meteorological
forecasts (e.g. Akbari Asanjan et al., 2018; Ausati and Amanollahi,
Table 1
Comparison analysis of probabilistic forecasting methods.

Methods Categories Pros

Pre-processing Fuzzy Clustering (FC) Quantifying the input
fuzzy characteristics

Wavelet Transform (WT) Quantifying the input
periodic or seasonal ch

Bias-correction Quantifying the input
systematic bias error

Post-processing Multiple Linear Regression (MLR) Quantifying the overa
of model structure an
linear features

Kalman filtering Quantifying the overa
of model structure an
systematic bias error

Generalized Likelihood Uncertainty
Estimation (GLUE)

Quantifying the overa
of model structure an
nonlinear features

Bayesian Uncertainty Processor (BUP) Quantifying the overa
of model structure an
Gaussian features

Bayesian Model Averaging (BMA) Quantifying the overa
of multi-model structu
2016; Cannon, 2011; Chang and Tsai, 2016; Gao et al., 2018; Nieto
et al., 2018; Prasad et al., 2016; Taghavifar et al., 2016; Voukantsis
et al., 2011; Yeganeh et al., 2018; Yu et al., 2016; Zhu et al., 2018;
Zhou et al., 2019 a,b). The factors of geographical location,
meteorological conditions, population, traffic density and in-
dustrial activities have an impact on the physical-chemical
composition and the concentration of airborne particles (e.g.
Fanizza et al., 2018; Li et al., 2018; Sun et al., 2016; Yu and Stuart,
2017). The mass concentration of atmospheric particulate matter
(e.g. PM2.5) relies on a series of natural and anthropogenic pro-
cesses, furthermore, the main contribution stems from secondary
particles (Lin and Zhu, 2018; Lyu et al., 2016; Wu et al., 2018).
Secondary particles’ formation is attributed to a lot of factors:
ozone, carbon monoxide, carbon dioxide, organic carbon, sulfur
dioxide, nitrogen oxides and meteorological environments like
temperature, precipitation, wind speed and direction as well as
relative ambient humidity (Berardis and Eleonora, 2017; Coelho
et al., 2014). Moreover, ensemble forecasting provides a prac-
tical and reliable approach that serves as a complement to ANN
models for simulating and understanding of particle formation,
transport, transformation and deposition mechanisms in the
primary, secondary and natural sources and processes (Chen
et al., 2018). Hence, it is interesting to make an in-depth study
on ANN models for improving forecast reliability and accuracy
and on the conversion of the deterministic forecasts into prob-
abilistic forecasts using post-processing ensemble techniques.

Predictive uncertainties are closely associated with the spatial
discretization of physical processes, model structure and param-
eterization. Because any air quality model is considered the brief
conceptualization of complicated chemical-physical processes in
the atmospheric system, the hypotheses in the conceptual model
induce air quality forecasts to get inaccurate. To decrease model
uncertainty, the model averaging method is commonly adopted to
integrate an ensemble of multiple models by using a linear sum of
diverse models. Such model-averaging approaches bring deter-
ministic outputs’ linear average and make a combined single-
value, for instance, equal weights averaging, MLR, Akaike Infor-
mation Criterion (AIC) or Bayesian Information Criterion (BIC)-
based model averaging (Breiman and Friedman, 1997; Buckland
et al., 1997; Granger and Ramanathan, 1984; Leslie and Holland,
Cons

uncertainty possessing Only for the input uncertainty possessing a
specific characteristic, not for model structure
and parameters uncertaintyuncertainty possessing

aracteristics
uncertainty possessing

ll predictive uncertainty
d parameters possessing

Only for the uncertainty possessing linear features

ll predictive uncertainty
d parameters possessing

Only for the single-model independently

ll predictive uncertainty
d parameters possessing

Only for the single-model independently

ll predictive uncertainty
d parameters possessing

Only for the single-model independently and
meeting Gaussian assumption

ll predictive uncertainty
re and parameters

Only for the specific form of posterior distributions
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1991). Even if these model averaging methods have achieved good
practicality and applicability, some researchers (e.g. Hoeting et al.,
1999; Raftery et al., 2005) contended that the weights cannot
thoroughly characterize single models’ contribution and advo-
cated BMA’s application. The BMA approach can integrate the
Probability Density Function (PDF) of different model predictions
by means of making a weighted one. The applications of BMA
approach in meteorological forecasts motivated its several usages
in air quality forecasts (e.g. Mok et al., 2018; Pucer et al., 2018;
Pannullo et al., 2016; Weber et al., 2016). However, the conditional
PDF in standard BMA is supposed to conform to a Gaussian dis-
tribution (Raftery et al., 2005), which is appropriate for some
specific predicted variables (e.g. atmospheric pressure and tem-
perature). For other variables (e.g. PM2.5, PM10, Ozone, precipita-
tion and wind speed), the Gaussian distribution would be a bad
choice, whereas other PDF distributions (e.g. Gamma, Gumbel,
Pearson type III, Generalized Extreme Value, etc) would be good
choices for fitting predicted variables (Mok et al., 2018; Pucer
et al., 2018). Additionally, the standard BMA application need
transform the model outputs (or predicted variables) from original
space to the Gaussian space. To prevent such information loss
during data space transformation, multivariate Copula functions
have been used in meteorological and hydrological fields (e.g.
Chen and Guo, 2019; Khajehei and Moradkhani, 2017; Nelsen,
2006; Zhang and Singh, 2019), owing to their outstanding capa-
bility of modeling the nonlinear dependence of multiple variables
and their allowance of some flexibility in choosing an arbitrary
marginal distribution. In a study by Madadgar and Moradkhani
(2014), the combination of multivariate Copula function and
BMA (CBMA) can relax the Gaussian assumption of PDFs. The
CBMA approach showed superior practicality and reliability in
hydrologic forecasts (e.g. rainfall-runoff processes). Whereas the
review of the available literature indicates the CBMA has not been
applied in air quality forecasts. Consequently, it is imminent to
implement an in-depth study on the exploration of CBMA for
quantifying and reducing the uncertainty encountered in
ensemble air quality forecasts.

The research gaps and how did this work fulfill research gaps
were described as follows. First, the current ensemble models for
air quality forecasting mainly involved single-output ANNs and/
or shallow learning ANNs whereas multi-output ANNs and deep
learning ANNs were rarely applied in the ensemble forecast of air
quality. Accordingly, the integration of the single-output, the
multi-output, the shallow learning, and the deep learning ANN
models were proposed to configure the four members of the
ensemble scheme for air quality forecasting (i.e. point forecasts).
Second, the contribution of this study was attributed to exploring
and extending our previous works (i.e. deterministic ANN
models) (Zhou et al., 2019a,b) for making probabilistic ensemble
PM2.5 forecasts. Third, the family of Bayesian ensemble forecast
methods consists of BMA and CBMA. The BMA method has been
widely adopted for air quality forecasting. Despite the CBMA is an
existing method, it has been rarely employed in the air quality
forecast field. Accordingly, the CBMA method was introduced to
create a probabilistic ensemble scheme for air quality forecasting
based on point forecasts driven by multiple ANNs.

The novelties of this study relied on: multiple ANNs with
various characteristics were for the first time integrated into a
novel ensemble scheme for air quality forecasting while the
combination of Copula function and BMA (CBMA) was taken as
an existing method but rarely used in the air quality forecast
field.

In this study, a CBMA-based approach was proposed for inte-
grating CBMA and multiple ANNs to reduce the prediction intervals
of ensemble PM2.5 forecasts. Firstly, multiple ANN models were
constructed for creating deterministic PM2.5 forecasts indepen-
dently. Then for comparison purpose, the CBMA approach and the
BMA approach were implemented to transform the deterministic
PM2.5 forecasts of multiple ANN models into the ensemble proba-
bilistic PM2.5 forecasts respectively. The regional PM2.5 forecasts in
Taipei City of Taiwan were taken as a study case to assess the
applicability as well as reliability of the proposed ensemble forecast
method.

2. Methods

Fig. 1 illustrated the ensemble forecast architecture that inte-
grated the four deterministic ANN models (Fig. 1 (a)) with the BMA
(Fig. 1 (b)) or the CBMA ensemble forecast approach (Fig. 1 (c)). The
deterministic point forecasts were created bymultiple ANNmodels
independently. The ensemble forecast could be improved by CBMA,
as compared with the benchmark method (i.e. BMA). The used
methods were briefly described as below.

2.1. Deterministic ANN models

In this study, the selected ensemble members included single-
output ANFIS (S-ANFIS) (Jang, 1993), multi-output SVM (M-SVM)
(Xu et al., 2013; Zhou et al., 2019a), single-output NARX (S-NARX)
(Leontaritis and Billings, 1985) and multi-output deep learning
LSTM (M-LSTM) (Zhou et al., 2019b) models. All models were the
artificial neural network models and constructed for deterministic
PM2.5 forecasting. The models have the same network structures
(i.e. input layer, hidden layer & output layer) whereas the models
have different machine learning mechanisms. The S-ANFIS can
extract the static and fuzzy feature between air quality and other
factors, the M- SVM can extract the non-linear relationship be-
tween them, the S-NARX can extract dynamic feature between
them, while the M-LSTM can extract the long and short-term
relationship between them.

In the case of static ANNs (i.e. S-ANFIS and M-SVM), a typical
three-layered static feedforward neural network, which is
comprised of multiple elements including nodes and weight con-
nections that link nodes. In the case of recurrent ANNs (i.e. S-NARX
and M-LSTM), the recurrent neural network involves three layers
and constitutes recurrent connections from the outputs, which can
delay several unit times to produce new inputs. More detailed
descriptions of the four models and their parameters setting for air
quality forecasting can be found in the references (Ausati and
Amanollahi, 2016; Ghazi and Khadir, 2009; Prasad et al., 2016;
Zhou et al., 2019 a,b).

Air quality data with specific time-lags (e.g. PM2.5, PM10, ozone,
oxynitride, nitrogen dioxide, nitric oxide, sulfur dioxide, carbon
monoxide, etc) andmeteorological datawith specific time-lags (e.g.
precipitation, temperature, wind speed and direction as well as
relative humidity) constituted the input variables while multi-step-
ahead air quality forecasts (e.g. PM2.5 concentration from tþ1 up to
tþ4, horizon ¼ 4) constituted the output variables.

The differences of four ANN models were summarized as (1)
the two models (S-ANFIS & S-NARX) possessed single-output
model structures where the two models (M-SVM & M-LSTM)
possessed multi-output model structures; (2) the former three
models (i.e. S-ANFIS, M-SVM& S-NARX) were classified as shallow
neural networks (i.e. number of hidden layers ¼ 1) whereas the
fourth model (i.e. M-LSTM) was classified as deep learning neural
networks (i.e. number of hidden layers �2); and (3) the former
two models (i.e. S-ANFIS & M-SVM) were classified as static (i.e.
non-recurrent) neural networks whereas the latter two models
(i.e. S-NARX&M-LSTM) were classified as dynamic (i.e. recurrent)
neural networks. Moreover, the S-ANFIS and S-NARXmodels need



Fig. 1. Ensemble probabilistic forecast architecture. (a) ANN models. (b) Bayesian Model Averaging (BMA). (c) Copula-based Bayesian Model Averaging (CBMA) for ensemble
forecasting.
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to construct multiple independent models to output air quality
forecast at diverse monitoring stations whereas the M-SVM and
M-LSTM models require only one forecast model to make air
quality multi-outputs. That is to say, the selected four ensemble
members can provide model diversity for the applications of the
following ensemble forecast approaches.
2.2. Bayesian Model Averaging (BMA)

BMA is a post-processing technique used to integrate the fore-
cast results that are created by different models in virtue of making
an ensemble PDF. The predicted distribution of a realization of the
observation yt , considering themultiple forecasts of kmodels fM1;t ;

M2;t ;/;Mk;tg, and the observed data Ywithin the training stage can
be formulated as follows.

p

 
yt
��M1;t ;M2;t ;/;Mk;t ; Y

�¼ Xk
i¼1

uip
�
yt jMi;t ; Y

!
(1)

where pðyt
��M1;t ;M2;t ;/;Mk;t ;YÞ is the predictive distribution of

the realization of the observation yt , given the independent fore-
casts of k models fM1;t ; M2;t ; /; Mk;tg, and the observed data Y.
pðyt

��Mi;t ;YÞ is the posterior distribution of function of yt, given
model forecast Mi;t , and training data Y . ui is the weight coefficient
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of ith model. The general implementation procedure of the BMA
approach consisting of four basic steps can be found in Appendix A.
2.3. Copula-based Bayesian Model Averaging (CBMA)

Fromwhat has been discussed above, the predictive distribution
in the BMA approach is generally confined to a specific parameter
distribution (e.g. Gaussian distribution) and is computed by a
weighted sum of forecast PDFs. Therefore, we clarified a general
procedure that fused multivariate Copula function into the original
BMA approach (CBMA) to relax the limitations of unbiased fore-
casts and Gaussian distribution.

Let uMi;t
and uyt be the sampling values in CDFs of UM and Uy

respectively. Let pMðuMi;t
Þ and pyðuyt Þ be the Probability Density

Functions (PDFs) of the forecast variables of multiple models (Mi;t)
and realization of observation (yt) respectively. Using the PDF of
Copula function, a joint PDF of (uMi;t

, uyt ) and a conditional proba-
bility can be constructed as follows.

p
�
uMi;t

; uyt
�
¼ cqi

�
uMi;t

; uyt
�
, pM

�
uMi;t

�
,py
�
uyt
�

(2a)
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�
uyt
���uMi;t

�
¼
p
�
uMi;t

; uyt
�

pM
�
uMi;t

� ¼ cqi
�
uMi;t

; uyt
�
,py
�
uyt
�

(2b)

where pðuMi;t
; uyt Þ is the joint PDF of (uMi;t

, uyt ). cqi ðuMi;t
; uyt Þ is the

Copula joint PDF of (uMi;t
, uyt ) and qi is the parameter of the Copula

function. pðuyt
���uMi;t

Þ is the conditional probability of uyt , given the
value of uMi;t

. Then, the conditional probability (Eq. (2b)) is used to
replace the posterior probability (Eq. (1)) and the predicted dis-
tribution of the realization of observation yt is updated as follows.

p

 
yt
��M1;t ;M2;t ;/;Mk;t ; Y

� ¼Xk
i¼1

uip
�
yt jMi;t ; Y

!

¼
Xk
i¼1

uicqi
�
uMi;t

; uyt
�
,py
�
uyt
� (3)

As seen in Eq. (3), the posterior distribution pðyt
��Mi;t ;YÞ is directly

calculated without needs to use both bias-correction methods (Eq.
(1) in Appendix A) and Gaussian data transformation (Eq. (2) in
Appendix A). The general implementation procedure of the CBMA
approach consisting of four basic steps can be found in Appendix B.

It is noted that the differences between BMA approach and
CBMA approach include: (1) the former demands a particular
conditional PDFs (e.g. Gaussian), or data transformation (Non-
Gaussian PDFs) and bias-correction for model forecasts whereas
the latter has a flexible structure and relaxes the type of conditional
PDFs and (2) the former needs to estimate the parameters of weight
(ui) and variance (d2i ) whereas the latter needs to estimate the
Copula parameter (qi) and the weight (ui).

The general implementation programming of used machine
learning models (ANFIS, SVM, NARX, LSTM) and Copula function
can be obtained from the Statistics and Machine Learning Toolbox
of the Matlab software (website: https://ww2.mathworks.cn/
products/statistics.html#machine-learning).
2.4. Evaluation criteria

TheRoot-Mean-Square Error (RMSE) and the goodness-of-fitwith
respect to the benchmark (Gbench) were introduced to assess the ac-
curacy of the deterministic forecast model. The two indicators were
defined as follows.
RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

ðbYðtÞ � YðtÞÞ2
vuut ; RMSE � 0 (4)

Gbench ¼
 
1�

PT
i¼1ðbYðtÞ � YðtÞÞ2PT

i¼1ðYðtÞ � YbenchðtÞÞ2

!
�100%; Gbench

� 100% (5)

where bYðtÞ and YðtÞ are themodel forecast and observation at the t-
th time, respectively. YbenchðtÞ is the observation moved backwards
by nth time lags, for instance, for the horizon tþ n, YbenchðtÞ ¼ Yðt �
nÞ.

To evaluate the performance of probabilistic forecast models,
the Containing Ratio (CR), the average Relative Band-width (RB)
and the Continuous Ranked Probability Score (CRPS), were adopted
for assessing the goodness of the prediction bounds (Gneiting and
Raftery, 2007; Gneiting, 2008). Their mathematical formulas were
described below.

NðtÞ¼
�
1; if ðqlðtÞ � bZðtÞ � quðtÞÞ

0; else
(6a)

CR¼
PN

t¼1NðtÞ
N

� 100% (6b)

RB¼ 1
N

XN
t¼1

	
quðtÞ � qlðtÞ

ZðtÞ



(7)

CRPS¼
ðþ∞

�∞

h
Ff ðxÞ � FoðxÞ

i2
dx (8)

where qlðtÞ and quðtÞ are the lower and upper boundaries of the
forecasted data corresponding to a given confidence level at the t
time respectively. Ff ðxÞ and FoðxÞ are the cumulative distribution
functions of the forecast and observation distributions, respec-
tively. x is the variable of the cumulative distribution function. The
value of NðtÞ is either 0 or 1, in which 0 indicates the observed data
falls outside of its prediction bounds while 1 indicates the observed
data falls within its prediction bounds. These evaluation criteria
indicate that models with higher Gbench and CR values but lower
RMSE, RB and CRPS values would produce better performances.
3. Study area and materials

The study area (Fig. 2) was briefly introduced as follows. With
the economy and population fast boosting, one of the hot topics in
Taiwan focused on air quality deterioration. People in Taipei City
were compelled to handle a high-level intervention of PM2.5. Air
pollution not just induced respiratory diseases but also caused a
matter of life or death. Hence, it is imperative to make accurate and
reliable PM2.5 forecasts so as to adequately process the health risk
caused by regional air pollution.

The positions of Taipei City and 5 air quality monitoring stations
were presented in Fig. 2. Stations A1 (Yonghe) and A2 (Sanchong)
where the stations located in areas of heavy traffic are traffic sta-
tions, Stations A3 (Songshan) and A4 (Shilin) where the stations
located in areas of intensive human activities and commercial
trading are general stations, and Station A5 (Yangming) where the
station located in the Yang-Ming Park is a park station. The Envi-
ronmental Protection Administration (EPA) in Taiwan (https://

https://ww2.mathworks.cn/products/statistics.html#machine-learning
https://ww2.mathworks.cn/products/statistics.html#machine-learning
https://taqm.epa.gov.tw/taqm/en/b0101.aspx


Fig. 2. Distribution of air quality monitoring stations (A1-A5) in Taipei City.
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taqm.epa.gov.tw/taqm/en/b0101.aspx) provided a convenient open
data platform where researchers could get access to many kinds of
Taiwan-related data such as air quality andmeteorological datasets.
Hourly data of air quality factors (eight variables: PM2.5, PM10,
ozone, oxynitride, nitrogen dioxide, nitric oxide, sulfur dioxide,
carbon monoxide) and meteorological factors (five variables: pre-
cipitation, temperature, wind speed and direction as well as rela-
tive humidity) over a span of 9 years (2010e2018) were available. A
total of 78,888 (¼[(2 � 366)þ(7 � 365)] � 24) hourly datasets were
used in this study, where 35,064 data (4 years) were used for model
training while the remaining 26,304 data (3 years) and 17,520 data
(2 years) were used for model validating and testing respectively.
The data standardization that centered the mean to 0 and the
standard deviation to 1, was conducted to decrease the negative
effect of the different scales of input data on the model’s learning
ability.

Fig. 3 presented the statistic indexes of seasonal and annual
PM2.5 concentration at five air quality monitoring stations. We
noticed that the statistic indexes of the maximum, average and
standard derivation at traffic stations (A1 and A2) were the highest
while those in the park station (A5) were the lowest, which could
be due to the primary source of particulate matter of a station.
Based on the highest values (�0.5) of the Kendall tau coefficients
(Maidment, 1993), 1he4h time lags were identified for air quality
factors at traffic stations (A1 and A2) and 1he2h time lags were
identified for air quality factors at general and park stations (A3, A4
and A5) while 1he4h time lags were identified for meteorological
factors at all stations (Zhou et al., 2019 a,b).
4. Results and discussion

Both the CBMA approach and the BMA approachwere employed
to integrate the PM2.5 forecasts of four deterministic ANN models
and the BMA approach served as a benchmark. The results and
findings were presented in the order of the deterministic PM2.5
forecasts of four ANN models (Section 4.1), the determination of
marginal distributions and the Copula function (Section 4.2), the
ensemble PM2.5 forecasts and the summarization (Section 4.3),
shown as follows.
4.1. Deterministic PM2.5 forecasts of four ANN models

The four models (S-ANFIS, M-SVM, S-NARX and M-LSTM) were
applied for deterministic forecasting PM2.5 concentrations of five
monitoring stations (A1-A5) from horizons tþ1 up to tþ4 respec-
tively. The RMSE and Gbench scores over the testing stages were
calculated for each ANN model (Table 2). The RMSE and Gbench
scores indicated that the performance of static models (S-ANFIS &
M-SVM) was not as good as the recurrent models (S-NARX & M-
LSTM) at the traffic stations (A1 & A2) and the general stations (A3
& A4). While the single-output modes (S-ANFIS & S-NARX) per-
formed better than the multi-output models (M-SVM & M-LSTM)
at the park station (A5). This was mainly due to the different
learning mechanisms (or model structures) used for the configu-
ration of each model and the simulation of the different air
pollutant generating processes. The secondary processes (e.g. sta-
tions A1 & A2) and primary processes (e.g. stations A3 & A4) rep-
resented complex and indirect air pollutant generating
mechanisms and then required complex ANN models (e.g. S-NARX
or M-LSTM) with recurrent or deep learning algorithms (complex
model structure and a large number of parameters) to characterize
such processes. The natural processes (e.g. station A5) represented
simplex and direct air pollutant generating mechanisms and then
only required simplex ANN models (e.g. S-ANFIS or S-NARX) with
single-output structure (simplex mode structure and fewer pa-
rameters) to characterize such processes. As a reminder, the multi-
model ensemble strategy was a means to exploit the diversity of
skillful predictions from different models. Hence, from a perspec-
tive of regional air quality forecast accuracy, it needs an ensemble
technique (BMAs) to combine PM2.5 forecasts of different deter-
ministic models and improves their effectiveness for regional air
quality forecasts.

4.2. Determination of marginal distribution and copula function

In the CBMA application for different horizons (tþ1 ~ tþ4), it
needs to identify the best CDFs for fitting the observations (yt ;…;

ytþ4) and ith model forecasts (Mi;tþ1;…;Mi;tþ4). It seems reasonable
to consider that the observations (yt ; …; ytþ4) follow the same
marginal CDF of the variable (yt) and therefore only the cumulative

https://taqm.epa.gov.tw/taqm/en/b0101.aspx


Fig. 3. Statistic indexes of seasonal PM2.5 concentrations from 2010 to 2018 (9 years) at five air quality monitoring stations in Taipei City. The abbreviations (max, ave, min, std)
denote the maximum, average, minimum and standard deviation respectively.

Table 2
Comparison performance of four ANN models for deterministic PM2.5 forecasts from horizons tþ1 up to tþ4 in the testing stage at different stations.

Station Horizon ANFIS SVM NARX LSTM

RMSE (mg/m3) Gbench RMSE (mg/m3) Gbench RMSE (mg/m3) Gbench RMSE (mg/m3) Gbench

A1 tþ1 4.86 0.92 4.62 0.93 4.51 0.95 4.41 0.95
tþ2 5.77 0.87 5.68 0.90 5.43 0.91 5.11 0.92
tþ3 8.35 0.82 8.09 0.85 7.32 0.86 6.14 0.87
tþ4 11.33 0.78 11.26 0.80 10.78 0.82 9.55 0.84

A2 tþ1 4.66 0.91 4.58 0.92 4.47 0.94 4.31 0.95
tþ2 5.33 0.87 5.26 0.88 5.06 0.90 4.83 0.92
tþ3 7.49 0.76 7.34 0.78 7.12 0.82 7.04 0.85
tþ4 10.38 0.71 10.16 0.73 9.94 0.75 9.45 0.77

A3 tþ1 4.13 0.92 4.05 0.93 3.88 0.93 3.65 0.94
tþ2 5.23 0.88 5.11 0.90 4.92 0.91 4.71 0.92
tþ3 6.20 0.78 6.13 0.81 6.05 0.83 5.94 0.85
tþ4 9.29 0.72 9.15 0.74 8.67 0.76 8.21 0.78

A4 tþ1 3.86 0.90 3.72 0.92 3.61 0.93 3.55 0.94
tþ2 5.04 0.88 4.97 0.90 4.89 0.91 4.72 0.92
tþ3 6.30 0.80 6.21 0.83 6.13 0.86 6.06 0.88
tþ4 8.92 0.73 8.85 0.75 8.66 0.81 8.57 0.83

A5 tþ1 2.51 0.91 2.58 0.89 2.12 0.93 2.65 0.88
tþ2 3.61 0.88 3.78 0.86 3.36 0.90 3.90 0.84
tþ3 5.18 0.84 5.57 0.81 5.03 0.87 5.86 0.78
tþ4 7.26 0.78 7.59 0.75 7.03 0.81 7.92 0.74
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Fig. 4. Statistic indicator (D) values for verifying the null hypothesis at the 5% significance level in the training stages at the Traffic Station A1. The critical value of statistic indicator
(D) ¼ 0.047. The large values (�0.047) of statistic indicator (D) indicate that the null hypothesis for candidate distribution would be rejected at the 5% significance level and the small
values (<0.047) of statistic indicator (D) indicate that the null hypothesis for candidate distribution cannot be rejected at the 5% significance level.
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Table 3
Estimated parameters of the candidate copula functions and the values of statistic
indicator (D) in the training stages at the Traffic Station A1.

Model Variables Gumbel-
Hougaard

Frank Clayton

q D q D q D

S-ANFIS (yt, Mtþ1) 9.3 a0.017 21.4 0.023 16.6 0.092
(yt, Mtþ2) 9.0 0.022 20.7 0.027 16.0 0.105
(yt, Mtþ3) 8.6 0.029 19.8 0.034 15.2 0.111
(yt, Mtþ4) 8.1 0.036 18.6 0.040 14.2 0.124

M-SVM (yt, Mtþ1) 9.6 0.015 22.0 0.020 17.2 0.094
(yt, Mtþ2) 9.1 0.021 20.9 0.025 16.2 0.102
(yt, Mtþ3) 8.8 0.027 20.2 0.031 15.6 0.114
(yt, Mtþ4) 8.3 0.034 19.0 0.038 14.6 0.128

S-NARX (yt, Mtþ1) 10.3 0.012 22.3 0.016 18.6 0.085
(yt, Mtþ2) 9.8 0.016 21.2 0.020 17.6 0.094
(yt, Mtþ3) 9.3 0.021 20.1 0.025 16.6 0.109
(yt, Mtþ4) 8.9 0.030 19.3 0.032 15.8 0.120

M-LSTM (yt, Mtþ1) 10.2 0.014 22.5 0.017 18.4 0.089
(yt, Mtþ2) 9.8 0.017 21.6 0.021 17.6 0.097
(yt, Mtþ3) 9.4 0.020 20.7 0.027 16.8 0.105
(yt, Mtþ4) 9.0 0.028 19.9 0.034 16.0 0.117

a A number in bold denotes the smallest value of statistic indicator (D) in its
category. The values of yt are the observed PM2.5 concentrations of Traffic Station A1
at the current time t. The values of Mtþ1, Mtþ2, Mtþ3, Mtþ4 are the ANN models
forecasts of PM2.5 concentrations of Traffic Station A1 at the horizons from tþ1 to
tþ4. The critical value of statistic indicator (D) ¼ 0.047. The large values (�0.047) of
statistic indicator (D) indicate that the null hypothesis for candidate distribution
would be rejected at the 5% significance level and the small values (<0.047) of
statistic indicator (D) indicate that the null hypothesis for candidate distribution
cannot be rejected at the 5% significance level.
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distribution functions of the observation (yt) and model forecasts
(Mi;tþ1;…;Mi;tþ4) need to be fitted (Koutsoyiannis and Montanari,
2015; Liu et al., 2018).

Take traffic Station A1 for example, Fig. 4 summarized the KeS
statistic indicator values (D), which was used to verify the null
hypothesis at the 5% significance level in the training stages. The
null hypothesis was defined as the marginal distribution follows
one candidate distribution, against the alternative that it did not
follow such a candidate distribution. The results suggested that the
null hypothesis for all four candidate distributions could not be
rejected at the 5% significance level (critical value ¼ 0.047), other
than Gaussian and Pearson type III distributions. That is to say, both
observations and model forecasts have non-Gaussian and Pearson
type III properties. The Gumbel distribution provided minimal D
values for all observations while the Log-Weibull distribution
provided minimal D values for all model forecasts. In other words,
the Gumbel distribution and the Log-Weibull distributionwould be
considered as the best fitted distributions for observations (yt) and
model forecasts (Mi;tþ1;…;Mi;tþ4) respectively.

When the best marginal distribution was determined, a Copula
function should be selected tomodel the joint distribution between
model forecasts (Mi;t) and observations (yt). Take the Traffic Station
A1 for example, Table 3 presented the estimated parameters of the
three candidate copula functions and the values of statistic indi-
cator (D) in the training stages. The null hypothesis was defined as
the joint distribution follows one candidate Copula function,
against the alternative that it did not follow such a candidate
Copula function. The results revealed that the null hypothesis for
two candidate distributions could not be rejected at the 5% signif-
icance level (critical value ¼ 0.047), other than Clayton Copula
function. The smallest KeS statistic indicator (D) was produced by
the Gumbel-Hougaard Copula function. Consequently, the Gumbel-
Hougaard Copula function could be considered as the best fitted
joint distribution between observations (yt) and model forecasts
(Mi;t).
4.3. Ensemble PM2.5 forecasts

Moreover, QQ plots were employed to assess the reliability of
ensemble PM2.5 forecasts. Fig. 5 presented the predictive QQ plots
used for ensemble PM2.5 forecasting (e.g. traffic Station A1, general
Station A3 & park Station A5) from horizons tþ1 up to tþ4 in the
testing stages, respectively.

According to Fig. 5(b) and 5(c), it was easy to find that the QQ
plot generated by the CBMA approach was closer to the 1:1 line, in
comparison to that of the BMA one. That is to say, the CBMA
approach produced higher reliability and smaller bias than the BMA
one. The results pointed out that the CBMA approach could effec-
tively quantify predictive uncertainty owing to its better agreement
between the predictive distribution and the observations. This
finding demonstrated that the CBMA approach performed signifi-
cantly better from the perspective of reliability.

For the ensemble PM2.5 forecasts (e.g. Traffic Station A1, General
Station A3 & Park Station A5) at horizons from tþ1 up to tþ4, the
values of CR, RB and CRPS scores were listed in Fig. 6. For the Traffic
Station A1 and the General Station A3, the CBMA approach pro-
duced better performance in all horizons whereas the BMA per-
formed well only at horizons up to tþ2 (e.g. CR was higher than
90%, RB was lower than 0.15 and CRPS was lower than 12 mg/m3 at
the Station A1). For the Park Station A5, the BMA approach per-
formed as well as the CBMA approach in all horizons. Take the
Traffic Station A1 for example, the BMA approach produced small
CR values, whereas the CBMA approach produced small RB and
CRPS values. For horizon tþ4, the CBMA approach could improve
the CR value by 9.58% as well as reduce the RB value by 34.48% and
the CRPS value by 32.89%, as compared to the BMA one. That is to
say, the CBMA approach not only could largely increase ensemble
forecast accuracy at the goodness of the prediction bounds (in
terms of CR and CRPS values) but also could decrease the impact of
PM2.5 concentration magnitude on the band-width of the predic-
tion bounds (in terms of RB values) simultaneously.

The results demonstrated that the CBMA approach had higher
reliability and generalizability for ensemble PM2.5 forecasting, in
comparison to the BMA one. The reason for causing the forecast
accuracy of the CBMA approach superior to the BMA one consisted
of: the Copula functions in CBMA approach were able to eliminate
forecast bias and characterize the correlations between observed
values and forecast values so that the forecast errors and biases
could be reduced significantly. In consequence, the simple bias
correction with linear regression method would not need in the
application of Copula functions in the CBMA approach, as compared
to the BMA one.

The weights created by CBMA and BMA approaches in the
training stage were presented in Fig. 7. Each data point suggested
the weights (CBMA & BMA) for various models and different ho-
rizons (tþ1 ~ tþ4); there were 16 data points (4 (models) � 4
(horizons) ¼ 16) in each subplot. Except in the Park Station A5
(correlation coefficient R ¼ 0.65), the correlation of weights
(R ¼ �0.11e0.37) was very small, which could clearly demonstrate
the different performance of CBMA and BMA. It was noted from Eqs.
(5) and (8) that the weight of each model in the BMA (or CBMA)
approach was expressed as a function of the latent variable vti ðjÞ (or
zti ðjÞ) and the posterior probability of training datawas employed to
compute it. Hence, the CBMA approach was not only restricted to
the model diversity and the shape of posterior distributions, but it
also had an effect on the weights assigned to each forecast model
and the performance of EM algorithm.

To clearly differentiate the capabilities of the BMA and the CBMA
approaches, three PM2.5 events with maximal PM2.5 concentrations
reaching 80 mg/m3 (low), 160 mg/m3 (medium) and 250 mg/m3

(high), respectively, were applied for testing both approaches by



Fig. 5. Predictive Quantile-Quantile (QQ) plots for ensemble PM2.5 forecasts from horizons tþ1 up to tþ4 in the testing stages at the traffic Station A1, general Station A3 and park
Station A5 respectively. The quantile of observed datum is the probability value corresponding to the observed datum while the quantile of U[0, 1] is the probability value cor-
responding to the forecasted datum.
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Fig. 6. CBMA and BMA performance of ensemble PM2.5 forecasts in the testing stage at the traffic Station A1, general Station A3 and park Station A5. All of indicator values are
computed for the 90% prediction intervals.
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evaluating whether the observed PM2.5 concentrations fell within
the 90% prediction interval at horizon tþ4 in the testing stages, as
shown in Fig. 8. It revealed that: (1) most of the observed PM2.5
concentrations fell within the 90% prediction intervals generated
by both approaches, (2) the CBMA approach provided better results
in terms of predictive distribution, and (3) the CBMA approach was
magically superior to that of the BMA one. From air pollutant
mechanisms’ perspective, primary emission’s impact related to
meteorological circumstances (i.e. park Station A5) on the BMA and
CBMA approaches was not significant, while secondary emission’s
impact related to meteorological circumstances (i.e. traffic Station
A1 and general Station A3) on the BMA and CBMA approaches
made a significant difference. For Taipei City, a fast urban growth
city, regional air quality exchanges with traffic burdens, commercial
trading and intensive human activities frequently. A high PM2.5
event driven by secondary processes was closely related with
regional transportation of aged secondary aerosol or secondary
transformation of gaseous pollutants, whereas a medium-low
PM2.5 event driven by the primary or natural process was closely
related with local weather conditions and primary emissions. Both
CBMA and BMA approaches produced a better performance at the
traffic station (A1) and general station (A3) than at the park station
(A5). In other words, the CBMA approach not only greatly improved
the ensemble forecast accuracy of PM2.5 concentration at traffic
station and general station, but also performed as well as the BMA
approach at the park station.

In brief, from the standpoint of model performance, RMSE and
Gbench were employed to evaluate the accuracy of deterministic
PM2.5 forecasts while QQ plot, CR, RB and CRPS indicators were
employed to evaluate the reliability (QQ plot) and sharpness (CR, RB
and CRPS) of ensemble PM2.5 forecasts. The CBMA approach not
only could produce more stable and accurate ensemble forecasts
but also could reduce the predictive distributions encountered in
multi-step-ahead PM2.5 forecasts to small ranges, by means of
removing the requirements of data transformation and bias
correction procedures, in comparison to the BMA approach. In light
of methodological transferability, future research would extend the
CBMA methodology on ensemble forecasting or comparison anal-
ysis studies between data-driven models and physically-based
models (e.g. Weather Research and Forecasting Models).
5. Conclusions

This study explored a CBMA approach for modeling ensemble
PM2.5 forecasts of 5 air quality monitoring stations located in the
Taipei City of Taiwan and the standard BMA one was selected as a
benchmark. First, four ANN models with different complexities
were used for PM2.5 forecasts of each air quality monitoring station.
And then, the CBMA approach and the BMA approach were
compared in ensemble PM2.5 forecasting.

The results demonstrated that the CBMA approach displayed
better ensemble forecast skill in comparison to the BMA one. First,
in terms of CR, RB and CRPS indicator values, forecast accuracy and
reliability increased significantly after applying the CBMA approach



Fig. 7. Comparing the weights of four ANN models for the horizons (tþ1 to tþ4) in the training stage after the application of CBMA and BMA for each station.
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in all air qualitymonitoring stations. For horizons tþ1 up to tþ4, the
CBMA approach would increase the values of CR indicator by 3.12%
� 9.58% as well as decrease the values of RB indicator by 8.63% �
34.48% and the values of CRPS indicator by 7.62% � 32.89%, as
compared to the BMA one. Second, results of QQ plots indicated
that less bias, and more reliable forecast results when the CBMA
approach was employed as a post-processing technique for multi-
ple deterministic models. In comparison to BMA, the CBMA
approach could create a more precise predictive distribution with
small uncertainty. The CBMA approach produced much better
forecasts on the air quality concentrations at longer forecast hori-
zons and significantly alleviated underpredicting phenomena. The
reason that the CBMA approach succeeded in attaining favorable
ensemble forecasts would be owing to the core strategy: the use of
the Copula function could capture the dependence structure be-
tween variables, which avoided their transformation in the
Gaussian space as it was done in the BMA approach.

Therefore, the CBMA approach in place of the BMA onewould be
in the interest of reducing the predictive uncertainty of real-time
PM2.5 forecasting. In the application of the CBMA approach, the
key point was to detect and select a suitable marginal PDF for each
observation and model forecast, and then a Copula function was
constructed for modelling a joint PDF between observation and
model forecast. It was worth noting that the computational time
(less than 2 min) of the proposed approach was extremely short
and therefore it could be applied with success to real-time air
quality forecasting.

From the perspective of regional PM2.5 characteristics, Taipei
City acts as Taiwan’s political, economic and cultural center, while
its air quality concentrations are attributed to high traffic in-
fluences, high human activities and commercial trading influences
in comparison to these in other cities of Taiwan. The proposed
methodology could be effectively employed not only to model the
heterogeneities in different air pollutant-generating mechanisms
(e.g., primary and secondary mechanisms, and natural situations)
and different seasons, but also to provide reliable and accurate
probabilistic regional PM2.5 forecasts in the interest of Taiwan’s
social and industrial development.
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Fig. 8. BMA and CBMA ensemble PM2.5 forecasts for air quality monitoring Stations A1, A3 and A5 at horizon tþ4 respectively. Three PM2.5 events with maximal PM2.5 concen-
trations exceeding (a) 250 mg/m3 (high concentration, Station A1), (b) 160 mg/m3 (medium concentration, Station A3) and (c) 80 mg/m3 (low concentration, Station A5) were selected
for testing the constructed models, respectively.
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Appendix A

General implementation procedure of BMA approach

Step 1: Implement bias-correction. One requirement of BMA
application is that the model forecasts Mi;t should be bias-
corrected due to the non-bias assumption. A bias-correction
with linear regression method suggested by Raftery et al.
(2005) was adopted prior to BMA execution and the original
model forecast results (Mi;t) ought to be substituted by the bias-
corrected forecast variables (fi;t).

fi;t ¼ ai þ biMi;t (1A)

where fi;t and Mi;t are the ith bias-corrected value and original
model forecast respectively. ai and bi are the linear regression co-
efficients of ith model forecast.

Step 2: Transform data space. Another requirement of BMA
application is that the bias-corrected values (fi;t) should be
converted to special datasets with a Gaussian space. Box-Cox
transformation proposed by Box and Cox (1964) was used to
conduct data transformation and was described as below.
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f li;t ¼

8><>:
fi;t � 1

l
ls0

ln
�
fi;t
�

l ¼ 0
: (2A)

where f li;t and l are the bias-corrected value of ith model at the t
time and Box-Cox coefficient respectively. In this study, the artificial
covariate method (Dag et al., 2013) was employed to determine the
optimal value of Box-Cox coefficient while the KeS test statistic
(Lilliefors, 1967) was employed to prove the Gaussianity of the
transformed data. After implementation of the data transformation,
the posterior distribution pðyt

���f li;t ;YÞ would follow a Gaussian dis-
tribution pðyt

���f li;t ;YÞ � gðyt jf li;t ;d2i Þ.

Step 3: Estimate parameters. A log-likelihood function was
adopted to estimate the parameters of weight (ui) and variance
(d2i ) and was formulated as follows.

lf¼ log

 Xk
i¼1

uip
�
yt
���f li;t ; Y�

!
(3A)

where f is the vector of parameters fui;d
2
i ; i ¼ 1;2;/;kg.

The Expectation-Maximization (EM) suggested by Raftery et al.
(2005) was utilized to search the optimal parameters of weight (ui)
and variance (d2i ) when a termination criterion (early stopping or
the maximal iteration) was achieved. As the EM algorithm pro-
ceeds, the parameters of weight (ui) and variance (d2i ) were
updated as follows.

uiðjÞ¼
1
T

XT
t¼1

vti ðjÞ (4a)

d2i ðjÞ¼
PT

t¼1v
t
i ðjÞ
�
yt � f li;t

�2
PT

t¼1v
t
i ðjÞ

(4b)

vti ðjÞ¼
uiðj� 1Þ,g

�
yt
���f li;t ; d2i ðj� 1Þ

�
:Pk

i¼1uiðj� 1Þ,g
�
yt
���f li;t ; d2i ðj� 1Þ

� (4c)

lfðjÞ¼ log

 Xk
i¼1

uiðjÞ
XT
t¼1

g
�
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���f li;t ; d2i ðjÞ�

!
(4d)
Table 1
Candidate univariate distributions adopted for fitting the marginal distributions

Distribution Probability distribution function (pdf)

Gaussian
f ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffi

2ps
p exp

�
� ðx� mÞ2

2s2

�
Gamma

f ðxÞ ¼ ba

GðaÞx
a�1expð� bxÞ

Gumbel f ðxÞ ¼ a exp½ � aðx � mÞ � e�aðx�mÞ�

GEV
f ðxÞ ¼ 1

s

h
1þ g

�x� m

s

�ið�1=gÞ�1
,exp

�
�
h
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�x�
s

Person type III
f ðxÞ ¼ ba

GðaÞðx� mÞa�1exp½ � bðx � mÞ�

Log-Weibull
f ðxÞ ¼ 1

aðx� mþ 1Þ
�
lnðx� mþ 1Þ

a

�b�1

,exp
�
�
�
lnð
where T is the number of the training datasets and vti ðjÞ is the latent
variable for the ith model at the t time in the jth iteration.

Step 4: Create BMA ensemble forecasts. After the parameters of
weight (ui) and variance (d2i ) were estimated, we used the
Monte Carlo simulation method to generate BMA ensemble
forecasts (Raftery et al., 2005; Zhou et al., 2016). The procedure
was described as follows.
a) Generate an integer value of i in [1, 2, …, k] by using the

corresponding probabilities [u1, u2, …, uk]. Set the initial
cumulative weight u*

0 ¼ 0 and calculate cumulative weight
u*
i ¼ u*

i�1 þ ui for i ¼ 1, 2, …, k. Create a random variable u
between 0 and 1. If u*

i�1 � u � u*
i , it indicates that the ith

model forecast would be selected and used in the next step.
b) Generate a realization of the observation yt using the PDF

gðyt
���f li;t ;d2i Þ.

c) Repeat the above two steps (a) & b)) for K times. K is the
number of Monte Carlo simulation and set as 1000 in this
study. At last, data conversion is needed to convert the
ensemble forecasts from a Gaussian space to their original
space. Furthermore, 90% confidence intervals between the 5%
and 95% quantities were employed to reveal the uncertainty
of BMA ensemble forecasts.
Appendix B

General implementation procedure of CBMA approach

Step 1: Configure the marginal distributions of the forecast
variable of each model (Mi;t) and realization of observation
(yt) respectively. Let UM ¼ PMðMi;tÞ and Uy ¼ PyðytÞ are the
Cumulative Distribution Functions (CDFs) of the forecast var-
iable of each model (Mi;t) and realization of observation (yt)
respectively. It would specify and determine the marginal
distribution PMðMi;tÞ of the forecast variable of each model
(Mi;t) and the marginal distribution PyðytÞ of the realization of
observation (yt) to construct posterior probability in the next
step. Seven different probability distributions, including
Gaussian, Gamma, Gumbel, Pearson type III, Generalized
Extreme Value (GEV) and Log-Weibull were tried in this study
and summarized in Table 1.
Range Parameters

� ∞< x< þ ∞ m

s

x>0 a

b

� ∞< x< þ ∞ a

m

m�i�1=g
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s

g

x>m a

b

m

x� mþ 1Þ
a

�b x>m a

b
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Table 2
Candidate bivariate Archimedean copula functions

Copula function Joint distribution function Parameter

Gumbel-Hougaard Cðu1;u2jqÞ ¼ expf� ½ð�lnu1Þq þ ð�lnu2Þq�1=qg *t ¼ 1� 1
q

q � 1
Frank

Cðu1;u2jqÞ ¼ � 1
q
ln
�
1 þ ½expð�qu1Þ � 1�½expð�qu2Þ � 1�

expð�qÞ � 1

�
t ¼ 1þ 4

q

241
q

Z q

0

t
expðtÞdt � 1

35
� ∞< q< þ ∞

Clayton Cðu1;u2jqÞ ¼ ðu�q
1 þ u�q

2 � 1Þ�1=q
t ¼ q

2þ q
q>0

* t is the Kendall’s coefficient.
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Owing to the wide practicality of the L-moments method
(Hosking, 1990; Zhou and Guo, 2014) and the KeS statistic test
method (Lilliefors, 1967; Razali andWah, 2011), these twomethods
were used to estimate the distribution parameters and find the best
marginal distribution respectively. The 5% significance level was
applied to deciding whether a fitted distribution was acceptable or
not, and then the probability distribution that possessed the min-
imum KeS test statistic indicator D (i.e. the maximum difference
between the values of the empirical and the expected cumulative
distributions) value was recommended as the best fitted
distribution.

Step 2: Apply Copula function to constructing the posterior
probability of forecast variable of each model pðyt

��Mi;t ; YÞ.
Various family members of Copula functions have been intro-
duced by Nelsen (2006). The Archimedean Copula functions
have impressive practicality in hydrologic and meteorological
research domains because it is easy to construct (e.g. Chen and
Guo, 2019; Zhang and Singh, 2019).

In this study, three Copula functions were tested, including
Gumbel-Hougaard, Clayton and Frank from Archimedean Copula
functions (Table 2). Then, the Kendall’s coefficient and the KeS
statistic test method were employed to estimate the parameter of
Copula functions and choose the best Copula function. The copula
function possessing the smallest KeS statistic indicator (D) at the
5% significance level would be selected as the most suitable one.

Step 3: Apply EM algorithm to estimating weight parameter (ui)
of each model. After the posterior distribution is constructed, its
weight parameter was estimated by using the EM algorithm by
means of a few adjustments in the Eq. (4) of Appendix A.

uiðjÞ¼
1
T

XT
t¼1

zti ðjÞ (5a)

zti ðjÞ¼
uiðj� 1Þ,p

�
uyt
���uMi;t

�
Pk

i¼1uiðj� 1Þ,p
�
uyt
���uMi;t

�
¼

uiðj� 1Þ, � cqi
�
uMi;t

; uyt
�
,py
�
uyt
�

Pk
i¼1uiðj� 1Þ,cqi

�
uMi;t

; uyt
�
,py
�
uyt
� (5b)
lfðjÞ¼ log

 Xk
i¼1

uiðjÞ
XT
t¼1

cqi
�
uMi;t

; uyt
�
,py

�
uyt
�!

(5c)

where zti ðjÞ is the latent variable for the ith model at the t time in
the jth iteration based on the Copula conditional probability. As
seen, the estimation of variance parameter (d2i ) has not occurred in
Eq. (5). Furthermore, the posterior probability pðuyt

���uMi;t
Þ is calcu-

lated only one time in Eq. (5) and that remains the same for all the
iterations. While the posterior probability gðyt

���f li;t ; d2i ðj�1ÞÞ in the
BMA (Eq. (4) in Appendix A) should be computed and updated
when the variance parameter (d2i ) changes.

Step 4: Apply the Monte Carlo simulation method for produc-
ing the realization of observation (yt). a) Generate an integer
value of i in [1, 2,…, k] by using the corresponding probabilities
[u1, u2, …, uk]. Set the initial cumulative weight u*

0 ¼ 0 and
calculate cumulative weight u*

i ¼ u*
i�1 þ ui for i ¼ 1, 2, …, k.

Create a random variable u between 0 and 1. If u*
i�1 � u � u*

i , it
indicates that the ith model forecast would be selected and
used in the next step. b) Generate a realization of observation
yt using the conditional PDF cqi ðuMi;t

; uyt Þ,pyðuyt Þ. c) Repeat the
above two steps (a) & b)) for K times. K is the number of Monte
Carlo simulation and set as 1000 in this study. Similarly, 90%
confidence intervals were employed to reveal the uncertainty
of CBMA ensemble forecasts.
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