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A B S T R A C T   

Reliable and accurate regional multistep-ahead flood forecasts during extreme events are crucial and beneficial 
to flood disaster management and preparedness. Hydrologic uncertainty associated with the nonlinear depen-
dence structure of flood inundation dynamics makes flood inundation forecasting fundamentally challenging. 
This study proposes a novel machine learning-based model (SAE-RNN) that hybrids the stacked autoencoder 
(SAE) with a recurrent neural network (RNN) for providing accurate and timely information to support emer-
gency management in areas impacted by flood hazards. The proposed SAE-RNN model uses SAE to compress 
(encode) the high-dimensional flood inundation depths in a wide region into a low-dimensional latent space 
representation (flood features), uses RNN to forecast multistep-ahead flood features based on regional rainfall 
patterns, and finally uses SAE to reconstruct (decode) the multistep-ahead forecasts of flood features into 
regional flood inundation depths. A large number of hourly datasets of flood inundation depths collected in Yilan 
County of Taiwan formed the case study, where each dataset contains 169,797 grids of inundation depth. The 
datasets were divided into three independent datasets for use in training, validating and testing stages. The 
models’ results showed that RMSE values were very small (<0.09 m) and R2 values were high (>0.95) in all the 
cases (1- up to 3-hour-ahead forecasts in three stages). We conclude that the reason why the proposed SAE-RNN 
models are capable of attaining favorable regional multistep-ahead flood inundation forecasts could be owing to 
two core strategies: the effective continual extraction of the nonlinear dependence structure from flood inun-
dation dynamics for lessening hydrologic uncertainty by virtue of SAE; and the nonlinear conversion of rainfall 
sequences into future flood features by virtue of RNN.   

1. Introduction 

The explosive growth in urban development has occurred worldwide 
over the last decades, where the transformation from rural to urban land 
use has produced a significant reduction in the absorption capacity of 
the watershed, causing an increase in runoff and producing high peak 
flows rapidly, especially during extreme events. An urban flash flood 
resulting from heavy rains and may endanger human lives and damage 
property as well as initiate a cascade of environmental and health im-
pacts. Although flood control infrastructures have been steadily 
increased, flood damage has continued to increase dramatically due, in 
part, to the urban development in flood-prone areas. Flash floods have 
long been common in Asian cities with growing urbanization and 
extreme rainfall, which have driven increasingly severe and frequent 
flood events (Luo et al., 2018). To mitigate flood damages, emergency 
management authorities may rely on real-time flood forecast systems 

that provide sufficient lead time for evacuation and asset protection in 
urban watersheds during extreme rainfall events. However, the devel-
opment of these systems is rather complicated due to spatio-temporal 
variations and uncertainty in rainfall distributions alongside complex 
rainfall–runoff relationships. Moreover, urban flood observation 
equipment is not installed pervasively such that the monitoring datasets 
of regional flood inundations are rare. Thus, regional flood inundation 
datasets under various hydro-metrological conditions could be obtained 
mainly from simulation models. Nevertheless, flood simulations are 
commonly conducted based on hydraulics theorems with given hydro-
logical conditions and thus require a large amount of computation time, 
which cannot meet the needs of real-time flood forecasts. For a city 
undergoing fast urban development, its regional meteorological condi-
tions would interact with intensive human activities and climate change, 
giving rise to the non-stationary process between rainfall and runoff, 
with features difficult to be captured by a static learning mechanism. 
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Therefore, regional flood inundation forecasting remains one of the most 
challenging tasks in hydrology. 

Artificial neural networks (ANNs) have been developed rapidly in 
the field of data science over the last decades. ANNs can effectively 
simulate highly nonlinear and complex systems through learning their 
relationships between input and output patterns, without requiring the 
parameter settings of physical processes. ANNs have become a popular 
and useful tool for predicting various hydrological variables, such as 
precipitation (e.g., Shafaei et al., 2016; Valipour, 2016; Nanda et al., 
2019) and regional flood inundation depths (e.g., Chang et al., 2014, 
2018, 2019). Many studies in the past decade showed that ANNs could 
improve the accuracy and reliability of rainfall-runoff prediction (e.g., 
Badrzadeh et al., 2015; Chang, 2020; Chang and Tsai, 2016; Chen et al., 
2013; Humphrey et al., 2016; Noori and Kalin, 2016; Nourani, 2017; 
Nourani et al., 2014; Puttinaovarat and Horkaew, 2020; Ren et al., 2019; 
Shoaib et al., 2018; Tan et al., 2018; Taormina et al., 2015; Tsai et al., 
2014; Xie et al., 2019; Zhou et al., 2020). Deep learning neural networks 
utilize network architectures of multiple (≥2) hidden layers to capture 
the inherent features of data layer-by-layer without prior knowledge and 
produce good performance in time series forecasting (Abbasi et al., 

2020; Zhou et al., 2019). The volume, velocity, and variety of hydro-
logical data keeps growing on account of the large-scale deployment of 
sensors, and sensing data have the potential to be transformed into ac-
tions to revolutionize hydrological fields owing to the availability of 
computational resources and the popularity of deep learning (Tong 
et al., 2018; Sit et al., 2020). Bai et al. (2019) combined the deep 
learning and recursive modeling for inflow forecasting and concluded 
that such combination could benefit the exploration of complex features 
in the inflow forecasting. Deep learning has also been applied to noise 
removal in recent years (Bi et al., 2019a, 2019b; Yu et al., 2019; Kidoh 
et al., 2020; Li et al., 2020). 

Autoencoder (AE) with an encoder-decoder framework is a type of 
neural networks for dimensionality reduction (Wang et al., 2016), 
feature detection and extraction (Zabalza et al., 2016; Liu et al., 2017a), 
and sequence-to-sequence prediction (Kao et al., 2020; Orland et al., 
2019; Xiang et al., 2020a, 2020b) lately. The encoder of AE could largely 
reduce the encoding input dimension while the decoder of AE could 
reconstruct the reduced (encoded) representation into the output as 
close as possible to its original input. One key advantage of AE is that 
this model can extract useful features continuously during propagation 

Fig. 1. Architectures of SAE-RNN model.  
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Fig. 2. The process of building SAE in this study.  
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and filter out useless information (Liu et al., 2017b). With dimension 
reduction in input information, the efficiency of the model learning 
process of AE models can be increased. The encoder and decoder 
structure of AE is usually multi-layer and can be constructed by stacking, 
hence it is called “stacked autoencoder (SAE)”. Li et al. (2016) used SAE 
to extract and learn useful features from a large number of data for better 
accommodating the characteristics of daily reservoir inflow. Jiao et al. 
(2018) proposed a model combining SAE and back propagation algo-
rithm for the short-term wind power forecasting. Liu et al. (2019) 
adopted a stacked denoising autoencoder for short-term electric load 
forecasting. In this study, SAE is used to extract regional flood features 
and serves as a restorer for the multistep-ahead forecasts of regional 
flood inundation depths. 

The long short-term memory (LSTM) configured with a recurrent 
neural network (RNN) architecture is a type of deep neural networks 
(DNNs) (Hochreiter and Schmidhuber, 1997). The LSTM is used to deal 
with the exploding and vanishing gradient problems that may occur 
when training RNNs with long-term lags. Recently, the LSTM has been 
implemented to explore its capability in time series forecasting of river 
flood (Le et al., 2019; Ding et al., 2020; Ni et al., 2020), low-flow time 
series forecasting (Sahoo et al., 2019), and water table depth (Zhang 
et al., 2018a, 2018b; Jeong and Park, 2019) as well as to learn long-term 
dependencies within hydrological catchments (Kratzert et al., 2019) and 
model rainfall-runoff processes (Sezen et al., 2019; Kao et al., 2020). For 
neural networks, the sequence-to-sequence learning trains a model by 
converting a sequence from one domain into another domain (Wiseman 
and Rush, 2016; Chiu et al., 2018). Sequence-to-sequence models 
embedded with LSTM have gained marvelous achievements in various 
fields, like anomaly detection (Fengming et al., 2017), image segmen-
tation (Marmanis et al., 2018), video recognition (Zhu et al., 2017; Zhu 
and Zabaras, 2018), time series forecasting (Du et al., 2018; Zaytar and 
El Amrani, 2016; Zhang et al., 2018a,b; Zhou et al., 2019), and rainfall- 
runoff processes (Kratzert et al., 2018a, 2018b, 2019; Kao et al., 2020; 
Xiang et al., 2020a, 2020b). 

The prosperous development of deep learning algorithms offers 
powerful tools to handle massive data, and deep learning methods often 
outperform conventional machine learning ones in many fields. Inspired 
by these, we intend to propose a deep learning based approach for 
regional multistep-ahead flood inundation forecasts. ANNs, SAE and 
DNNs have the merits to explore in-depth how regional rainfall se-
quences can be mapped onto urban flood inundation sequences for 
reliably and accurately making multistep-ahead regional flood inunda-
tion forecasts. In this study, we aim to develop a novel methodology that 
hybrids SAE with an LSTM-based RNN for constructing a regional 
multistep-ahead forecast model to provide timely inundation informa-
tion in support of emergency management at areas threatened by flood 
hazards. The novelty of this study lies in the use of sequence-to-sequence 
SAE (continual feature extraction of flood inundation dynamics during 
propagation and dynamic filtering of useless information) and RNN 
(nonlinear conversion of rainfall sequences into future flood features) to 
map regional rainfall sequences onto urban flood inundation sequences. 
The remainder of this study is organized as follows. Section 2 presents 
the framework of the proposed methodology. Section 3 introduces the 
case study and materials. Section 4 presents the results and discussion of 
the methods applied to multistep-ahead regional flood forecasts. Con-
clusions are then drawn in Section 5. 

2. Methodology 

In this study, we propose a novel machine learning methodology 
(SAE-RNN) that integrates SAE with an LSTM-based RNN for accurately 
making regional multistep-ahead flood inundation forecasts. The 
framework of the proposed methodology is displayed in Fig. 1. The main 
merit of the methodology can be three-fold: (1) using SAE to sequen-
tially compress the huge dimensional flood inundation depths (input 
datasets) into a low dimensional code (a vector of flood features) and 

then sequentially decompress and reconstruct the code into flood 
inundation depths that have the same dimension as input datasets; (2) 
using an LSTM-based RNN model to perform a nonlinear conversion of 
the input (rainfall sequences) into a specific number of rainfall features 
and then decode the features with the model’s feedback of the previous 
flood features to predict future flood features; and (3) fusing the flood 
features predicted by the LSTM-based RNN model as the code of SAE to 
sequentially reconstruct multistep-ahead regional flood inundation 
forecasts. The methods adopted are described in the following sections. 

2.1. Stacked autoencoder (SAE) 

AE is an ANN that has two main components, encoder and decoder. 
The encoder is responsible for compressing the high dimensional input 
data into the low dimensional latent-space representation (code) while 
the decoder is responsible for reconstructing the code into the output. A 
sacked autoencoder (SAE) is a DNN with multiple hidden layers, where 
the encoding and decoding layers are typically pairwise symmetrical 
(Fig. 2). The SAE architecture with a one-layer encoder and a one-layer 
decoder is denoted as SAE1, as shown in Fig. 2(a). The encoder, the code, 
and the decoder are defined as follows. 

encoder1 : Rn0 →Rn1 (1)  

decoder1 : Rn1 →Rn0 (2)  

d, n ∈ R  

C1 = encoder1(X0) (3)  

X’0= SAE1(X0) = decoder1(C1) (4)  

X0,X’0 ∈ Rn0 ,C1 ∈ Rn1  

L(X0,X’0) = ‖X0 − X’0‖
2 (5) 

where C1 denotes an n1-dimensional code (vector); and X0 and X’0 

are the input and output vectors with dimension n0, respectively. SAE is 
trained to minimize the reconstruction error, L(X0,X’0). The training of 
SAE is performed through the backpropagation of the reconstruction 
error. In this study, the input vector contains regional flood inundation 
depths (high dimensional grid data) and the code produced by the 
encoder can be regarded as the feature values of regional flood inun-
dation data. 

The fully connected layer (FCL) is implemented in each neuron of all 
the layers, as shown below. 

yn
j = f

(
∑

i
wijyn− 1

i + bn
j

)

(6) 

where yn
j is the output of the jth neuron in Layer n; yn− 1

i is the output 
of the ith neuron in Layer n-1; wij is the link weight between yn− 1

i and yn
j ; 

bn
j is the bias of the jth neuron in Layer n; and f is the Rectified Linear 

Unit (ReLU) function of the neuron. The ReLU function is a type of 
activation functions commonly used in DNNs, and its formula is shown 
below. 

ReLU(x) = max(0, x) (7) 

The value of the differential ReLU function falls within the range 
between 0 and 1, and therefore the ReLU function in AE can mitigate the 
gradient vanishing or exploding problems during network training. 

We next add two new FCLs (Fig. 2(b)) to SAE1to formSAE2 (Fig. 2(c)), 
where the trained weights of encoder1 and decoder1 are retained. The 
process of SAE2 transforms then0-dimensional input into n2-dimensional 
code and then reconstructs the transformed code into an n0-dimensional 
output, shown as follows. 
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C2= encoder2(encoder1(X0)) (8)  

SAE2(X0) = decoder1(decoder2(C2)) (9)  

X0 ∈ Rn0 ,C2 ∈ Rn2 

where encoder2 and decoder2 are both of one single FCL with 
initialization. C2 denotes an n2-dimensional code (vector). 

The next is to expand the entire stacking process to the mth stacking 

of AE (SAEm), as shown below. 

Cm = encoderm(encoderm− 1(⋯encoder1(X0)⋯)) (10)  

SAEm(X0) = decoder1(decoder2(⋯decoderm(Cm)⋯ ) ) (11)  

Cm ∈ Rnm  

n0 > n1 > ⋯ > nm ∈ R 

where encoderm and decoderm are the newly added encoding and 
decoding layers in the stacking process, respectively. Cm denotes an 
nm-dimensional code (vector) that is compressed by m encoders (from 
encoder1 to encoderm). The total number of layers in SAEmis 2 m + 1 (an 
encoding part with m FCLs + a code with 1 FCL + a decoding part with m 
FCLs). The architecture of SAE5 is shown in Fig. 2(d). 

2.1.1. Principal component analysis (PCA) 
In order to increase model effectiveness and stability when training 

the weights of SAE, the principal component analysis (PCA) is used to 
reduce the dimension of each code in the entire stacking process, where 
the eigenvector of PCA is implemented as the initial weights of the newly 
added layer (encoderm and decoderm). The training of SAE involves 
weight initialization and weight adjustment (Fig. 3). The initialization 
step (Step 1) is divided into four sub-steps. Sub-step 1(a) uses PCA to 
calculate the eigenvalues (λm) and eigenvectors (νm) of the previous code 
(Cm− 1). If m is 1, Cm− 1 is the input vector (X0). Sub-step 1(b) calculates 
Pj

λm 
(the ratio of the jth eigenvalue to the sum of all eigenvalues), sorts 

the percentages in descending order, and calculates the cumulative 
percentage (CPj

λm
) of Pj

λm
. Pj

λm 
and CPj

λm
are as shown below. 

Pj
λm

=
λj

m∑nm
k=1λk

m
(12)  

CPj
λm

=
∑j

k=1
Pk

λm
(13) 

where λj
m is the jth eigenvalue for the initialization of encoderm and 

decoderm in SAEm. 
Sub-step 1(c) determines a suitable dimension (nm) for the code of 

SAEm by comparing the preset value L and CPj
λm

, shown as follows. 

nm = j, when CPj
λm

> L, and j < m (14) 

Sub-step 1(d) initializes the weight values of encoderm and decoderm. 

Fig. 3. Flow chart of training SAE using PCA results.  

Fig. 4. Architecture of the LSTM unit.  
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The sum of the product of inputs and weights (
∑

iwijxi) is equal either to 
the linear transformation equation if the initial bias (bn

j ) is set as 0 (Eq. 
(6)) or to the calculation of the jth principal component (pj) in PCA, 
shown below. 

pj =
∑

i
wijxi (15) 

where xi is the value of the ith coordinate in the original coordinate 
space; pj is the value of the jth coordinate in the new coordinate space; 
and wij is the transform coefficient. Therefore, this study uses the first j 
eigenvalues as the initial weights, shown below. 

wencoderm = νmj (16)  

wdecoderm = νT
mj (17)  

nm− 1 > nm = j 

where νmj is the vector spanned by the first jth rows of eigenvector νm; 
wencoderm is the weights with nm × nm− 1 elements initialized by the 
eigenvector (νmj) for encoderm; and wdecoderm is the weights with nm− 1 × nm 

elements initialized by the transpose of the eigenvector (νT
mj) for 

decoderm. 
After Step 1, the structure of SAEm is determined and its weight 

values are initialized. Step 2 will train SAEm. Sub-step 2(a) fixes the 
weights from SAEm− 1 and trains the weights of the newly added encoderm 
and decoderm. Sub-step 2(b) trains all the weights of SAEm to ensure the 
coverage and stabilization of weights. If the dimension (nm) of Cm rea-
ches the criterion, the training process of SAEm will be terminated, 
otherwise return to Step 1 to continue the new training process of 
SAEm+1. 

2.2. LSTM-based RNN model 

2.2.1. Long short-term memory (LSTM) 
The LSTM unit has several architectures. A common architecture 

comprises a core unit (the memory part) and three gate units (input, 
output and forget gates) that direct the information flow inside the LSTM 
unit (Fig. 4). The computation steps are shown as follows. 

It = Ht− 1 +Xt (18)  

Yt = fc(Wc∙It + bc) (19)  

Gi = fg(Wi∙It + bi) (20)  

Gf = fg
(
Wf∙It + bf

)
(21)  

Go = fg(Wo∙It + bo) (22)  

Ct = Gi∙Yt +Gf∙Ct− 1 (23)  

Ht = fc(Ct)∙Go (24) 

where the subscript t denotes the time step; Ht is the output vector; It 

is the merged input vector that combines the antecedent output vector 
Ht− 1 with the input vector Xt; Yt is the output vector of the core unit; Gi, 
Gf and Go are the output vectors (gate values) obtained from the input, 
forget and output gate units, respectively; and Ct is the new cell state 
vector of long-term memory, which will return to the LSTM unit when 
being reused. The core unit activation function fc is the Hyperbolic 
Tangent function, shown as follow. 

f (x) =
ex − e− x

ex + e− x (25) 

Fig. 5. Architectures of the LSTM-based RNN model.  
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The gate unit activation function fg is the Hard Sigmoid function, 
shown as follow. 

f (x) = max[0,min(1, 0.2x + 0.5) ] (26) 

In addition, Ct is not transformed by fc in this step such that it is much 
easier to keep the information of Yt for the next reuse. In the first time 
step (t = 0), the initial values of H0 and C0 are zero vectors. 

2.2.2. LSTM-based RNN models 
The architecture of the LSTM-based RNN model has four layers, as 

shown in Fig. 5. The first layer consists of LSTM units, which read the 
input information of k-hour antecedent regional rainfall. Because LSTM 
has an algorithm to discard (forget) a part of the previous information, 
the LSTM-based RNN model can retain important rainfall features and 
abandon (neglect) useless rainfall information. The second layer consists 
of an FFNN layer, which performs a non-linear conversion of the output 
of the first layer into a low-dimensional rainfall features. The FFNN layer 
can increase the nonlinear fitting effect and the efficiency of the weight 
adjustment algorithm. The third layer implements another LSTM-based 

model to produce multistep-ahead forecasts. The inputs of this layer 
contain the output vector (rainfall features, Cr) from the second layer 
and the forecasted vector (flood features) at the previous time step (Oi). 
In other words, rainfall features are the main factor affecting the 1-hour- 
ahead forecast of flood features while the 2- and 3-hour-ahead forecasts 
will be adjusted using the 1-hour-ahead forecast and the 1- and 2-hour- 
ahead forecasts, respectively, which would avoid a complete consistency 
of the current result with the antecedent results. The fourth layer con-
sists of an FFNN layer to make 1- to 3-hour-ahead outputs (flood 
features). 

2.3. SAE-RNN model 

As mentioned above, SAE firstly compresses a huge dimension of 
regional flood inundation depths into a low dimensional code of flood 
features and then sequentially decompresses and reconstructs flood 
features into regional flood inundation depths, which is mainly an 
encode-decode process. Then the LSTM-based RNN model estimates 
multistep-ahead flood features based on regional rainfall sequences. 

Fig. 6. Locations of Yilan County’s inundation-prone region and nearby rain gauges.  
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That is to say, based on a large number of regional flood inundation 
depths generated from various rainfall patterns, we want to demonstrate 
the proposed SAE-RNN model can effectively extract the features of 
regional rainfall patterns to accurately forecast multistep-ahead regional 
flood inundation depths (maps). 

2.4. Evaluation metrics 

This study adopts the root mean square error (RMSE) and the coef-
ficient of determination (R2) to evaluate the forecast results and use the 
mean absolute error (MAE) to show the error distribution of forecast 
results in the grid map. 

An RMSE value represents the error between the forecasted and 
observed values, which can be calculated by the following equation. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

t=1
(di − yi)

2

√
√
√
√ (29) 

where N is the number of samples; di is the target output value; and yi 

is the model output value. 
R2 is commonly used to evaluate the linear correlation between 

model outputs and target outputs, which can be calculated by the 
following equation. 

R2 =

⎡

⎢
⎢
⎢
⎢
⎣

∑N
t=1

(
di − d

)
(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

t=1
(di − d)2∑N

t=1
(yi − y)2

√

⎤

⎥
⎥
⎥
⎥
⎦

2

(30) 

where d is the mean of target outputs; and y is the mean of model 
outputs. 

An MAE value represents the absolute error between the forecasted 
and observed values, which can be calculated by the following equation. 

MAE =
1
N
∑N

t=1
|di − yi| (31)  

3. Study area and materials 

Taiwan is located in the north-western Pacific Ocean, where the 
activities of subtropical jet streams are frequent. The Yilan County in 
north-eastern Taiwan spans an area of approximately 2143 km2 and is 
selected as the study area because this county has a long history of 
flooding problems that continuously threaten the lives and livelihoods of 
residents. The historical observed data of inundation depths are so rare 
that it is almost inevitable to find alternative datasets for building flood 
forecast models. In this study, the synthetic hydrographs of inundation 
depths for various typhoon events and the designed rainfall patterns 
were obtained from the Water Resources Agency in Taiwan. These 
synthetic hydrographs and designed rainfall patterns were validated by 
various simulation models, such as the HEC-1 model, the Storm Water 
Management Model (SWMM), and the two-dimensional non-inertial 
overland flow simulation model. Investigative data consist of 31 his-
torical rainfall events and 24 designed rainfall events with various re-
turn periods at four rain gauges. The investigation focuses only on the 
inundation-prone region, which is of about 271 km2. The region is 
divided into a total of 169,797 grids, with a grid resolution of 40 m × 40 
m (169,797 grids ≅ 271 km2/(40 m × 40 m)). Fig. 6 shows the 
inundation-prone region and the locations of four rain gauges. 

Table 1 displays historical rainfall events, and Table 2 displays 24-h 
cumulative rainfall with various return periods at four rain gauges. The 
24-h hydrographs of flood inundation depths corresponding to these 55 
events (31 historical and 24 designed events) were used to establish the 
forecast models of regional flood inundation depths, where 40 events (i. 
e. 40 events × 24 h = 960 samples) were for training, 6 events (i.e. 6 
events × 24 h = 144 samples) were for validation, and 9 events (i.e. 9 
events × 24 h = 216 samples) were for testing. In brief, we have 
collected 1320 (55 events × 24 h) hourly datasets (samples), where each 
dataset contains 169,797 grids of regional flood inundation depths. The 
total number of data used in this study are 224,132,040 (55 events × 24 
h × 169,797 grids), which is very large. 

Table 1 
Rainfall information of 31 historical rainfall events.  

Event name 24-h cumulative rainfall (mm) 

Rain gauge 
No. 1 

Rain gauge 
No. 2 

Rain gauge 
No. 3 

Rain gauge 
No. 4 

Typhoon_1999- 
0605  

186.5 172.5  277.5  24.0 

Typhoon_2000- 
0708  

56.1 68.6  89.0  21.5 

Typhoon_2000- 
0821  

54.0 43.5  74.0  64.0 

Storm_2000-1029  46.1 31.6  0.1  17.5 
Storm_2000-1103  218.5 194.5  187.5  53.5 
Storm_2000-1111  72.5 70.5  154.5  12.5 
Storm_2000-1213  131.5 147.5  164.0  31.5 
Storm_2000-1219  132.1 27.6  120.0  28.0 
Typhoon_2001- 

0511  
133.0 150  134.0  5.5 

Storm_2001-0923  80.0 18.5  23.0  35.0 
Typhoon_2001- 

0924  
102.6 144.0  327.0  53.5 

Typhoon_2001- 
1015  

22.5 10.6  10.1  10.5 

Storm_2001-1208  147.1 41.1  27.1  77.0 
Typhoon_2002- 

0702  
53.1 76.6  26.1  90.0 

Typhoon_2003- 
0819  

96.5 2.1  55.5  77.0 

Typhoon_2003- 
0831  

136.1 124.5  87.5  25.0 

Storm_2003-0910  41.0 26.5  36.5  35.0 
Typhoon_2004- 

0607  
110.1 223.5  301.0  43.0 

Typhoon_2004- 
0823  

0.6 0.6  9.0  13.5 

Storm_2004-0907  24.1 69.1  59.6  34.0 
Typhoon_2004- 

1024  
74.1 98.1  68.5  23.5 

Typhoon_2005- 
0716  

27.1 53.5  145.5  48.0 

Typhoon_2005- 
0830  

45.0 57.0  59.5  3.0 

Typhoon_2005- 
0930  

91.6 91.6  57.6  3.0 

Storm_2006-0709  330.5 140.0  84.0  7.0 
Typhoon_2006- 

0914  
22.1 32.6  42.6  6.5 

Typhoon_2007- 
0806  

56.0 35.0  20.0  5.5 

Typhoon_2007- 
0816  

61.5 58.5  107.0  4.5 

Storm_2007-1013  148.0 114.5  169.5  9.0 
Storm_2007-1105  32.1 32.1  263.6  6.5  

Table 2 
24-h cumulative rainfall with various return periods at four rain gauges.  

Recurrence interval 
(year) 

24-h cumulative rainfall (mm) 

Rain gauge 
No. 1 

Rain gauge 
No. 2 

Rain gauge 
No. 3 

Rain gauge 
No. 4 

10  477.7  364.7  501.3  872.6 
25  576.1  439.0  605.7  1057.6 
100  721.9  548.9  764.1  1331.6 
200  794.2  603.4  844.7  1467.3  
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4. Results and discussion 

4.1. Dimension reduction of regional flood data by SAE 

This study constructed nine SAE models with eight different struc-
tures of hidden layers to explore the effect of hidden layers on fore-
casting. The numbers of neurons in hidden layers, the dimension of the 
code, and the restore errors (RMSE) in training and validation stages for 
each SAE model are shown in Table 3. In the beginning, the L value of 
Eq. (14) was set as 0.999 and the PCA result of input data X0 (dimension: 
169,797 grids) indicated the dimension of C1 was 144. Besides, the 
RMSE values of training and validation stages for SAE1were 0.030 m and 
0.042 m, respectively. The L value for SAE2 was also set as 0.999, but the 
L values of SAE3 up to SAE5 were changed as 0.990. In the stacking and 
training process of SAE, the obtained dimensions of C2 up to C5 were 22, 
14, 7, and 5, respectively. The RMSE values of SAE2 up to SAE5 in 
training and validation stages fell between0.031 m and 0.040 m. Ac-
cording to the PCA results for C5, all the CPj

λ5 
obtained (j < m in Eq. (14)) 

were smaller than L (CP4
λ5 

= 0.98) such that the cumulative percentage 
can’t provide the dimension information of the code (C6) for SAE6. 
Therefore, this study decided to set the dimension of the next code as the 
dimension of the current code minus 1 for m > 5. That is to way, SAE6, 
SAE7 and SAE8 were constructed and trained using 4-, 3- and 2-dimen-
sional codes, respectively. The RMSE values of SAE6 and SAE7 in 
training and validation stages fell within the range between 0.030 m and 
0.032 m. The RMSE values of SAE8 in training and validation stages fell 
within the range between 0.042 m and 0.046 m. 

Overall, among the nine models SAE7 with a 3-dimensioal code is the 
best SAE model because its restore error is the smallest. Although SAE8 
has the lowest dimension of the code, its restore error, however, is 
significantly large. Comparing SAE4 and SAE5, the restore error in the 
validation stage decreases. We speculate that this is the advantage of 
adding more hidden layers by using a nonlinear activation function, 
which allows the model to explain the spatial variability of regional 
flood data with fewer codes. This phenomenon may also explain why the 
dimension of the code decreases but the restore error does not increase 
significantly during the stacking process from SAE5 to SAE7. That is to 
say, a deeper network structure commonly enhances the compressibility 
and restorability of the SAE model but has a limitation in the dimen-
sionality of the code. 

In order to compare the difference in weight initialization between 
PCA and the random method (refer to SAE6 and SAE6R, respectively), the 
related RMSE values for SAE6R performed 10 rounds fell within 0.084 m 
and 0.397 m in the training stage and within 0.063 m – 0.300 m in the 
validation stage. Obviously, the training process of the SAE model would 
be difficult to converge due to the uncertainty caused by random 

initialization. In contrast, such training would be stable and accurate if 
PCA is used to initialize weights. For instance, the restore error could be 
reduced by 49% up to 64% if random initialization was replaced by PCA 
(Table 3). Finally, SAE5 up to SAE8 were used to build the regional flood 
forecast models in the following subsection. 

Model efficiency would be affected mainly by the leading principal 
components to be retained in the dimension reduction process, where 
the first round of dimension reduction for 169,797 grids would be the 
most important. After trial and error, this study determined 144 was the 
best dimensionality in the first round. Taking SAE1 as an example, 
Table 4 presents the performance (overhead) of dimension reduction 
associated with the number of the leading principal components of PCA. 
Referring to Table 4, it is foreseen that the proposed algorithms can still 
be effective as the scale of data increases, owing to the robust archi-
tecture that hybrids SAE and PCA. 

4.2. Multiple-hour-ahead forecasts of flood features by LSTM-based RNN 
models 

The rainfall records collected at four rain gauges were used to fore-
cast the flood features compressed by SAE. According to the architecture 
shown in Fig. 5, there are three hyper-parameters to be determined: the 
time delay k of inputs (rainfall data); the horizon of multistep-ahead 
forecasting; and the numbers of neurons in the first, second and third 
layers. The time delay k of rainfall data was determined, by the try and 
error procedure, as 24, 16, 8 and 4 h in this study. The results shown in 
Table 5 indicated the RMSE values increase as k decreases in all three 
stages, which suggests 24 h would be the best setting of the time delay of 
inputs (rainfall patterns) in this case study. 

In order to meet the demand of disaster prevention, this study 
focused on 1- to 3-hour-ahead forecasts. As known, using a large number 

Table 3 
Performance of SAE models.  

SAE modela Number of neurons in each hidden layer L CPj
λm

c  Dimension of Cm  Restore errord (RMSE) (m) 

encoder decoder Training Validation 

SAE1  X0,C1  C1, X’0   0.999  0.999 144 0.030 0.042 
SAE2  X0, 144,C2  C2, 144,X’0   0.999  0.999 22 0.031 0.039 
SAE3  X0, 144, 22,C3  C3, 22, 144,X’0   0.990  0.993 14 0.040 0.039 
SAE4  X0, 144, 22, 14,C4  C4, 14, 22, 144,X’0   0.990  0.993 7 0.031 0.039 
SAE5  X0, 144, 22, 14, 7,C5  C5, 7, 14, 22, 144,X’0   0.990  0.996 5 0.031 0.033 
SAE6  X0, 144, 22, 14, 7, 5,C6  C6, 5, 7, 14, 22, 144,X’0   –  – 4 0.030 0.032 
SAE7  X0, 144, 22, 14, 7, 5, 4,C7  C7, 4, 5, 7, 14, 22, 144,X’0   –  – 3 0.030 0.032 
SAE8  X0, 144, 22, 14, 7, 5, 4, 3,C8  C8, 3, 4, 5, 7, 14, 22, 144,X’0   –  – 2 0.046 0.042 
SAE6R

b  X0, 144, 22, 14, 7, 5,C6R  C6R, 5, 7, 14, 22, 144,X’0   –  – 4 Min: 0.084 Max: 0.397 Min: 0.063 Max: 0.300  

a X0 and X’0denote the input vector (dimension: 169,797) and the output vector (dimension: 169,797), respectively. Cm denotes the code of SAEm.
b Pj

λm 
is the ratio of the jth eigenvalue to the sum of all eigenvalues. 

c SAE6R that uses the random method on weight initialization for the SAE model has the same number of neurons in hidden layers asSAE6.
d A restore error in RMSE is the loss of flood data during the encode-decode process in SAE. 

Table 4 
Performance (overhead) of dimension reduction associated with the number of 
the leading principal components of PCA for SAE.  

Number of 
leading 
principal 
component (j) 

Cumulative 
percentage 
(CP) 

Number of 
weights in SAE 
(N = 169,797×

j× 2 + 169,
797 + j)  

Computer 
data storage 
(=N×

8/220)  

SAE1 

Training 
time  

1  87.8% 509,392 3.89 MiB <1 min 
2  94.5% 848,987 6.48 MiB <1 min 
10  99.0% 3,565,747 27.20 MiB 5 min 
144  99.9% 49,071,477 374.39 MiB 30 min 
398  99.99% 135,328,607 1032.48 MiB 73 min 
643  99.999% 218,529,382 1667.25 MiB 162 min  
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of neurons might only have little effect on model’s performance but 
would significantly increase the number of rounds of trial and error. For 
simplicity, the numbers of neurons (nCr ) the three flood forecast models 
(T + 1, T + 2, and T + 3) were set the same (5, 10, 15, 20 and 25) and the 
corresponding results are shown in Table 6. The results indicated a 
model with the smallest nCr (i.e. 5) would lead to comparatively large 
RMSE values and comparatively small R2 values whereas a model with a 
large nCr value (i.e. 25) not only took much time to train but also failed to 
achieve the best performance. Thus, the suitable value of nCr for pro-
ducing reliable and accurate results would be somewhere among 10, 15 
and 20. 

4.3. Regional multiple-hour-ahead forecasts of flood depths by SAE-RNN 
models 

The performance of four selected SAE-RNN models for multistep- 
ahead regional flood inundation forecasts are shown in Table 7. As 
shown, the SAE-RNN models are, in general, reliable and accurate. For 
instance, the RMSE values of 1- to 3-hour-ahead forecasting fell between 
0.07 m and 0.09 m while the R2 values fell between 0.96 and 0.97 in the 
testing stage. 

In order to further evaluate the four SAE-RNN models, we used three 
more performance indicators: (1) the regional flood forecast error of the 
SAE-RNN model; (2) the restore error of the SAE model; and (3) the flood 

Table 5 
Performance of the LSTM-based RNN model with different time delays of inputs (rainfall data).  

Time delay of inputs (rainfall data) RMSE R2 

Training Validation Testing Training Validation Testing 

24 h  0.20  0.19  0.23  0.97  0.96  0.95 
16 h  0.31  0.28  0.29  0.94  0.92  0.92 
8 h  0.45  0.41  0.50  0.84  0.80  0.74 
4 h  0.55  0.58  0.66  0.76  0.61  0.55  

Table 6 
Performance of LSTM-based RNN models.  

SAE model RNN model nCr
a  RMSE R2 

Training Validation Testing Training Validation Testing 

SAE5  RNN-A1 5  0.41  0.35  0.40  0.85  0.87  0.81 
RNN-A2 10  0.30  0.24  0.28  0.92  0.94  0.91 
RNN-A3 15  0.24  0.24  0.25  0.95  0.94  0.92 
RNN-A4b 20  0.21  0.22  0.24  0.96  0.95  0.93 
RNN-A5 25  0.27  0.25  0.26  0.94  0.93  0.92  

SAE6  RNN-B1 5  0.38  0.29  0.32  0.89  0.90  0.89 
RNN-B2 10  0.28  0.23  0.25  0.94  0.94  0.94 
RNN-B3 15  0.24  0.22  0.25  0.95  0.94  0.93 
RNN-B4 20  0.20  0.19  0.23  0.97  0.96  0.95 
RNN-B5 25  0.24  0.19  0.22  0.96  0.96  0.95  

SAE7  RNN-C1 5  0.25  0.20  0.26  0.94  0.95  0.92 
RNN-C2 10  0.17  0.15  0.18  0.97  0.97  0.96 
RNN-C3 15  0.14  0.13  0.16  0.98  0.98  0.97 
RNN-C4 20  0.19  0.13  0.17  0.97  0.98  0.97 
RNN-C5 25  0.15  0.14  0.15  0.98  0.98  0.97  

SAE8  RNN-D1 5  0.54  0.38  0.42  0.76  0.81  0.75 
RNN-D2 10  0.12  0.10  0.12  0.99  0.99  0.98 
RNN-D3 15  0.15  0.11  0.15  0.98  0.98  0.97 
RNN-D4 20  0.13  0.11  0.13  0.99  0.98  0.98 
RNN-D5 25  0.11  0.10  0.12  0.99  0.99  0.98  

a nCr is the dimension of the code (Cr) of rainfall patterns for the LSTM-based RNN models. 
b The selected RNN models are marked in bold. 

Table 7 
Performance of SAE-RNN models.  

SAE-RNN model SAE model Dimension of the code RNN model Time step RMSE (m) R2 

Training Validation Testing Training Validation Testing 

SAE-RNN 1 SAE5  5 RNN-A4 T + 1  0.08  0.06  0.08  0.97  0.96  0.97 
T + 2  0.09  0.07  0.09  0.97  0.96  0.96 
T + 3  0.08  0.06  0.08  0.98  0.97  0.97 

SAE-RNN 2 SAE6  4 RNN-B4 T + 1  0.07  0.06  0.07  0.98  0.96  0.96 
T + 2  0.07  0.06  0.08  0.98  0.96  0.97 
T + 3  0.06  0.06  0.07  0.98  0.97  0.97 

SAE-RNN 3 SAE7  3 RNN-C3 T + 1  0.08  0.06  0.07  0.97  0.96  0.97 
T + 2  0.08  0.06  0.08  0.98  0.96  0.97 
T + 3  0.07  0.07  0.09  0.98  0.96  0.96 

SAE-RNN 4 SAE8  2 RNN-D2 T + 1  0.08  0.07  0.08  0.97  0.95  0.96 
T + 2  0.09  0.07  0.08  0.97  0.96  0.96 
T + 3  0.08  0.07  0.08  0.97  0.96  0.97  
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feature forecast error of the LSTM-based RNN model. Fig. 7 presents the 
results of four models in testing stages using these three indicators. For 
simplicity, the results are the averages of errors associated with 1- to 3- 
hour-ahead forecasts. As shown, the SAE-RNN 2 model has the smallest 
regional flood inundation forecast error (RMSE = 0.073 m). Besides, 
SAE-RNN models do not make obvious difference in the restore error 
except that the SAE-RNN 4 model has the largest error (RMSE = 0.045 
m). This suggests that the dimension insufficiency in the code (flood 
features) will increase the restore error. Thus, the dimension of the code 
should be greater than 2. 

Fig. 8 further show the performance of the SAE-RNN 2 model in the 
testing stage (216 datasets), which displays the RMSE and R2 values in 
space (i.e. all the 169,797 grids) at three selected time levels (i.e. 1- to 3- 
hour-ahead). The RMSE and R2 values of each grid were calculated 
based on the forecasted and the target flood inundation depths of 216 
datasets. According to Fig. 8(a)–(c), it is observed that there is no sig-
nificant difference in the spatial distribution of RMSE values at T + 1, T 
+ 2, and T + 3. The RMSE values of all the grids were <0.3 m, with more 
than 78% of the values <0.1 m. The results clearly indicated that the 
SAE-RNN 2 model could, in general, appropriately make regional 1- to 3- 
hour-ahead forecasts in the study area. According to Fig. 8(d)–(f), it is 
apparent that there is no much difference in the spatial distribution of R2 

at T + 1, T + 2, and T + 3. Moreover, about 90% of the R2 values were 
higher than 0.95. High R2 values occurred at most of the inundation 
prone areas while relatively low R2 values (<0.8) only occurred at the 
areas with low maximum flood inundation depths (<0.1 m). The rela-
tively low R2 values in these grids (areas) are reasonable and acceptable. 

As for RNN models, we notice that the flood feature (code) forecast 
error decreases as the dimension of the code decreases. For instance, 
SAE-RNN 4 with a 2-dimensional code has the smallest RMSE value 
while SAE-RNN 1 with a 5-dimensional code has the biggest RMSE 
value. It appears that an increase in the dimension of the code will 
accumulate errors systematically. Thus, a higher dimension of the code 
might cause a negative impact on the accuracy of regional flood inun-
dation forecasts. The controversy between the restore error of SAE and 
the forecast error of RNN suggests that a model with a suitable dimen-
sion of the code to balance these two indicators can provide reliable and 
accurate regional flood inundation forecasts. 

4.4. Testing the SAE-RNN model by typhoon events 

Two storm events were used to further test the SAE-RNN model. This 
study selected the SAE-RNN 2 model that, in general, has the best per-
formance in the testing stage (Table 7). The first event is Event D06 (a 
designed event), which is one of the test events with 24-h hydrographs of 
flood inundation depths. The 24-hour cumulative rainfalls of this event 
at Rain Gauges No. 1 − No. 4 were 794.2 mm, 364.7 mm, 605.7 mm, and 
1331.6 mm, respectively. The maximum inundation depths over the 
study area is shown in Fig. 9(a). It is obvious that many places are 
seriously inundated (e.g., over 2 m). We notice that the RMSE values of 
1- to 3-hour-ahead regional flood inundation forecasts were <0.081 m 
and the R2 values ranged between 0.978 and 0.986. The distribution of 
the forecasted maximum inundation depths is shown in Fig. 9(b). The 
results demonstrates that the two inundation distribution maps (simu-
lated vs. forecasted) look quite similar. 

The second event is Typhoon Mitag in 2019. The 72-hour cumulative 
rainfalls of this event at Rain Gauges No. 1 − No. 4 were 5338 mm, 261 
mm, 239 mm, and 450 mm, respectively. There is no monitoring flood 
inundation dataset available, while there are four major inundated lo-
cations (a − d) reported and recorded by the government (Fig. 9(c)). The 
distribution of the forecasted maximum inundation depths is shown in 
Fig. 9(d). We noticed that our forecasted results contained all the 
flooding locations recorded by the government. Comparing Fig. 9(c) and 
9(d), all the four reported inundated locations are within our forecasted 
inundation area. 

Fig. 10 shows the forecast results of the SAE-RNN 2 model at the 24th 
hour of Event D06, where Fig. 10(a) presents the T + 1 outputs at the 
23rd hour, Fig. 10(b) presents the T + 2 outputs at the 22nd hour, Fig. 10 
(c) presents the T + 3 outputs at the 21st hour, and Fig. 10(d) presents 
the target values at the 24th hour. It is noted that the target values were 
generated (obtained) by SWMM. In general, the distribution of the 
forecasted flood inundation depths is similar (slightly higher) to that of 
the target values. Besides, there is no significant difference between the 
output values at T + 1 up to T + 3. The results indicated that the SAE- 
RNN 2 model could provide reliable and suitable flooding locations 
and inundation depths. 

Overall, the forecasted results provide further evidence that the 
proposed SAE-RNN model not only can effectively map (project) 

Fig. 7. Model performance evaluation in the testing stages. Top: the forecast error of SAN-RNN (RMSE values of 1- to 3-hour-ahead regional flood forecasts). Bottom 
left: the restore error of SAE (loss of flood data during the encode-decode process). Bottom right: the forecast error of RNN (RMSE values of 1- to 3-hour-ahead 
forecasts on flood features). 
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regional rainfall patterns onto regional flood inundation depths but also 
can suitably make 3-hour-ahead forecasts of the regional inundation 
depths in practical applications. 

4.5. Visualization of the spatio-temporal distribution of regional flood 
inundation 

As mentioned above, the SAE model can reduce the huge dimen-
sionality of regional flood inundation depths into a low-dimensional 
code of flood features. We like to present the values of low- 
dimensional code by the constructed SAE model to visually explore its 
flood features along with the storm events. The 2-dimensional flood 
features encoded by SAE8 can be easily displayed in the x-y coordinate 

plane, and the 2-dimensional flood features over time can well represent 
the track of regional inundation depths of a storm event. This study 
attempts to display 2-dimensional flood features and their correspond-
ing regional flood inundation depths in the same plane to visualize the 
temporal and spatial distribution of flood information in the study area. 

The first step uses SAE8 (encode mode) to calculate 2-dimensional 
hourly flood features for all the real and designed rainfall events, 
resulting a total of 1320 points (55 events × 24 hourly data). The dis-
tribution of 1230 points (two-dimensional flood features) is illustrated 
with grids (5 × 6), as shown in Fig. 11(a). As shown in Tables 1 and 2, 
the rainfall amounts of historical rainfall events are much smaller than 
those of designed rainfall events. We notice that all the codes associated 
with real rainfall events are categorized only into the upper-left corner 

Fig. 8. Performance of the SAE-RNN 2 model in the testing stage, with valuation metrics being calculated in space (169,797 grids) at three time levels (i.e. 1- to 3- 
hour-ahead forecast). 
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while the codes associated with designed rainfall events are widely 
spread in the designed x-y coordinate plane. The second step delivers the 
coordinates of the centroid of each grid that contains at least one point. 
We then use the decoder of SAE8 to convert the flood features (co-
ordinates) of each centroid into regional inundation depths, as shown in 
Fig. 11(b). As shown, the upper-left grids represent regional flood maps 
with lower values while the lower-right grids represent regional flood 
maps with higher values. 

To visualize the track of regional flood inundation depths of a storm 
event by the proposed model, we took Event D06 as an example. Fig. 11 
(c) displays all the 24 points of Event D06, where the red line represents 
these points connected in chronological order. It is obvious that the 24 

points (the red line) scatter over eight grids only. It is obvious that the 24 
points (the red line) scatter over eight grids only. Thus, the regional 
flood maps of the centroids of these eight grids are displayed for the 
purpose of comparison. We next plot the regional inundation map of the 
point the closest to the centroid of the grid, as shown in Fig. 11(d). By 
comparing Fig. 9(c) and (d), it is found that the values of flood features 
corresponding to the centroid (Fig. 11(c)) and the selected point (Fig. 11 
(d)) the nearest to the centroid in each grid in the course of the red line 
are close to each other, where the two regional flood maps in each grid 
are quite similar. Fig. 11 clearly displays that the proposed model can 
provide the 2-dimensional flood features together with their corre-
sponding regional flood inundation depths over the period of a storm 

Fig. 9. Comparison results of the maximum 
flood inundation depths for two test events. 
(a) and (c) are the distribution of the 
maximum flood inundation depths for two 
test events. (b) and (d) are the 1-hour-ahead 
forecasts by SAE-RNN for two test events. 
Four major inundation locations shown in (c) 
are: a. Yilan City; b. North Bank of the 
Lanyang River (South of Zhungwei County); 
c. South Bank of the Lanyang River (Wujie 
County); and d. North and South Bank of the 
Dongshan River (Dongshan County).   
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event in the same plane to visualize its temporal and spatial flood in-
formation in the study area. We would like to note that the 2-dimen-
sional flood features (codes) generated by the model (SAE8) can be 
visualized in the x-y coordinate plane and explored further, however, we 
cannot interpret (extract) their physical meanings, which would be a 
weakness of this approach. 

5. Conclusions 

This study develops a big-data mining model to make accurate 
multistep-ahead regional flood inundation maps based on regional 
rainfall patterns. We propose a novel SAE-RNN methodology that uses 
SAE to compress the high-dimensional flood inundation depths into a 
low-dimensional flood features, uses RNN to forecast flood features 
based on regional rainfall patterns, and then uses SAE to reconstruct the 
regional flood inundation depths based on the forecasted flood features. 

A large number (1320 datasets) of regional rainfall patters with corre-
sponding regional flood inundation depths (169,797 grids) of Yilan 
County in Taiwan were used to train and validate various SAE-RNN 
models. The results demonstrate that the models, in general, can pro-
vide reliable and accurate forecasts, with RMSE values falling between 
0.07 m and 0.09 m and R2 values higher than 0.95 in all the training, 
validating and testing stages. The findings of this study are summarized 
below.  

1. The SAE model can effectively reduce the huge dimension of regional 
flood inundation depths to extract and restore their flood features. 
The validation and testing results show that the restore errors 
(RMSE) of the SAE models fall between 0.032 m and 0.042 m in this 
case study, which are very small, as compared with the highly varied 
regional inundation depths. 

Fig. 10. Forecast results of the SAE-RNN 2 model at the 24th hour of Event D06. (a) T + 1 (the 23rd hour), (b) T + 2 (the 22nd hour), and (c) T + 3 (the 21st hour), as 
well as (d) the target values at the 24th hour. 

I.-F. Kao et al.                                                                                                                                                                                                                                   



Journal of Hydrology xxx (xxxx) xxx

15

Fig. 11. Visualization of regional flood data. (a) The features of the flood inundation distribution of a flood event encoded by SAE. (b) The flood inundation dis-
tribution of equally spaced flood features points restored by SAE. (c) The overlap of the flood features of the D06 test event and the flood inundation distribution of 
equally spaced flood features points. (d) The original flood inundation distribution of the D06 test event. 
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2. Compared with the random initialization method, using PCA to 
initialize network weights of SAE can significantly increase the 
effectiveness and stability of the SAE model during training and 
greatly reduce the restore error. Thus, we suggest initializing the 
weights of the RNN model with the use of PCA.  

3. A code with a suitable dimension that balances two indicators (i.e., 
the restore error of SAE and the flood feature forecast error of RNN) 
can provide reliable and accurate flood forecasts, which would 
constitute the best SAE-RNN model.  

4. The proposed SAE-RNN model, i.e. 2-code SAE8, can provide the plot 
of 2-dimensional flood features and their corresponding regional 
flood inundation depths over the period of a storm event in a plane, 
where the temporal and spatial flood information in the study area 
can be visualized and explored further. 

We conclude the proposed SAE-RNN methodology can effectively 
extract the features of regional rainfall-flood depths and suitably project 
regional rainfall onto regional flood features to accurately make 
multistep-ahead forecasts of regional inundation depths in practical 
applications. 

There is often some noise in various data, and therefore noise 
reduction or removal would be required during modelling. For instance, 
Bi et al. (2019a, 2019b)) proposed to combine the Savitzky-Golay for 
noise filtering and wavelet decomposition with stochastic configuration 
networks for data frequency representation to predict service workload 
at future time slots. In this study, the extraction of regional flood 
inundation features through SAE could remove most of the noise from 
inundation data. However, for rainfall data, the use of LSTM would not 
be sufficient enough for noise removal or reduction. Our future study 
will consider adopting noise reduction methods to filter rainfall infor-
mation before incorporating it into the deep learning models. 
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