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Operational flood control systems depend on reliable and accurate forecasts with a suitable lead time to take
necessary actions against flooding. This study proposed a Long Short-Term Memory based Encoder-Decoder
(LSTM-ED) model for multi-step-ahead flood forecasting for the first time. The Shihmen Reservoir catchment in
Taiwan constituted the case study. A total of 12,216 hourly hydrological data collected from 23 typhoon events
were allocated into three datasets for model training, validation, and testing. The input sequence of the model
contained hourly reservoir inflows and rainfall data (traced back to the previous 8 h) of ten gauge stations, and
the output sequence stepped into 1- up to 6-hour-ahead reservoir inflow forecasts. A feed forward neural net-
work-based Encoder-Decoder (FFNN-ED) model was established for comparison purposes. This study conducted
model training a number of times with various initial weights to evaluate the accuracy, stability, and reliability
of the constructed FFNN-ED and LSTM-ED models. The results demonstrated that both models, in general, could
provide suitable multi-step ahead forecasts, and the proposed LSTM-ED model not only could effectively mimic
the long-term dependence between rainfall and runoff sequences but also could make more reliable and accurate
flood forecasts than the FFNN-ED model. Concerning the time delay between the time horizons of model inputs
(rainfall) and model outputs (runoff), the impact assessment of this time-delay on model performance indicated
that the LSTM-ED model achieved similar forecast performance when fed with antecedent rainfall either at a
shorter horizon of 4 h in the past (T — 4) or at horizons longer than 7 h in the past (> T — 7). We conclude that
the proposed LSTM-ED that translates and links the rainfall sequence with the runoff sequence can improve the
reliability of flood forecasting and increase the interpretability of model internals.
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1. Introduction

Floods are one of the most dangerous natural disasters that notor-
iously threaten human life and property. The International Centre for
Water Hazard and Risk Management (ICHARM) reported that floods
accounted for about 30% of the total natural disasters and affected
more than 48% of people worldwide over the last century (Adikari and
Yoshitani, 2009). Floods are always a major concern in inundation
prone areas. This is especially true in Taiwan because there are, on
average, three typhoons to invade this island each year, and typhoon-
induced heavy rainfalls usually cause severe flood inundation in various
cities near estuaries. Therefore, flood forecasting plays a pivotal role in
flood mitigation, floodplain management, agricultural cultivation, and
human life protection. The development of early warning systems for
flood defense encounters great challenges, which creates an outreach
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demand for reliable and accurate multi-step-ahead forecasts. This pin-
points the focus of scientific research for flood defense should be placed
on increasing the reliability and accuracy of forecast models at longer
horizons.

Artificial neural networks (ANNs) can adequately mimic highly non-
linear complex systems and are widely used to tackle the modelling of
complex systems in hydrological fields (e.g. Dawson and Wilby, 2001;
Chau, 2006; Kalteh et al., 2008; Nourani et al., 2014; Chandwani, et al.,
2015). For instance, precipitation or evapotranspiration prediction
(e.g., Shafaei et al., 2016; Shenify et al., 2016; Valipour, 2016; Nourani
etal., 2017; Nourani et al., 2020, Nourani et al.,2019), flood forecasting
(e.g., Chen et al., 2013; Chang et al., 2014a,b; Lohani et al., 2014;
Taormina et al., 2015; Chang and Tsai, 2016; Noori and Kalin, 2016;
Humphrey et al., 2016; Tan et al., 2018), and rainfall-runoff modeling
(e.g., Abrahart et al., 2007; Nourani and Komasi, 2013; Badrzadeh
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Fig. 1. Architectures of the LSTM-ED and FFNN-ED models.

et al.,, 2015; Nourani, 2017; Shoaib et al., 2018; Nourani and
Partoviyan, 2018). Various studies also adopted ANNs for deploying
hydrological prediction during typhoons and storm events in Taiwan.
For example, Tsai et al. (2014) combined radar reflectivity and ground
rainfall data to predict reservoir inflows using the adaptive-network-
based fuzzy inference system (ANFIS), and Chang et al. (2014a,b) used
recurrent neural networks to make real-time multi-step-ahead flood
forecasts for a sewerage system in Taipei City.

The attractiveness of ANNs comes mainly from the remarkable
characteristics of data mining, such as learning ability, noise tolerance,
and generalizability. Nevertheless, different types of ANNs do have
their own merits and limitations in modeling complex systems. For
instance, the feed forward neural network (FFNN) fails to suitably
manage time-series data because the state of the network is erased after
processing each data, i.e. information about the sequential order of the
inputs is discarded, which is not desirable when handling inherently
interrelated data points. Besides, the FFNN implements a fixed-sized
sliding window protocol, which restrains the model from learning or
capturing the long-term dependencies between input and output. On
the other hand, recurrent neural networks (RNNs) are designed to
capture temporal dynamics by sequentially processing the inputs for
modelling the nonlinear relationship between input and output via

cycles formed by the hidden nodes in the network. In recent years, Deep
Learning (DL) has gained a lot of attention. Deep Neural Networks
(DNNs) are powerful tools and achieve excellent performance on dif-
ficult tasks (e.g., Sainath et al., 2015; Liu et al., 2017; Zhou et al.,
2019). The Long Short-Term Memory (LSTM) proposed by Hochreiter
and Schmidhuber (1997) is a type of DNNs configured with an RNN
architecture. The LSTM is used to deal with the exploding and van-
ishing gradient problems that may occur when training traditional
RNNs with long-term lags. Recently, LSTMs have been implemented to
explore its capability in time series forecasting of river flood (Le et al.,
2019) and water table depth (Zhang et al., 2018; Jeong and Park 2019)
as well as to learn long-term dependencies, e.g., storage effects within
hydrological catchments (Kratzert et al., 2018) and model rainfall-
runoff processes (Sezen et al., 2019).

For neural networks, the sequence-to-sequence learning trains
models by converting sequences from one domain into another domain
(Sutskever et al., 2014). Sequence-to-sequence models have recently
achieved significant performances on complex tasks like machine
translation, video to text, and question answering (Bengio et al., 2015;
Venugopalan et al., 2015; Wiseman and Rush, 2016; Chiu et al., 2018).
Sequence-to-sequence models configured with a LSTM unit have gained
marvelous achievements in various fields, like anomaly detection
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(Fengming et al., 2017), image segmentation (Marmanis et al., 2018),
video recognition (Zhu et al., 2017; Zhu and Zabaras, 2018), machine
translation (Audhkhasi et al., 2017; Malinowski et al., 2017; Costa-
Jussa, 2018), and air pollution forecasting (Freeman et al., 2018; Zhou
et al.,, 2019). From the perspective of data science, hydrological ana-
lyses involve many physical processes similar to sequence-to-sequence
problems. For instance, rainfall-runoff processes can be considered as
the conversion of rainfall sequences into watershed discharge se-
quences. This provides merit to explore in-depth how the rainfall se-
quence can be mapped onto a runoff sequence through DNN models for
reliably and accurately making multi-step-ahead flood forecasts.

This study proposes a LSTM-based Encoder-Decoder (LSTM-ED)
model that integrates a sequence-to-sequence learning, two LSTM units,
and an Encoder-Decoder scheme to make reliable and accurate multi-
step-ahead flood forecasts for the first time. In the beginning, the se-
quence-to-sequence learning is employed to establish a multi-input and
multi-output model structure. Then, the two LSTM units and the se-
quence-to-sequence learning are fused into the Encoder-Decoder
scheme for constructing a multi-output deep learning neural network
(i.e., LSTM-ED). To demonstrate the applicability of the LSTM-ED
model in multi-step-ahead flood forecasting, this study utilizes an in-
flow series of the Shihmen Reservoir in Taiwan as a case study. The
remainder of this study is organized as follows. Section 1 introduces the
study background and makes a literature review. Section 2 presents the
framework of the proposed model. Section 3 introduces the case study
and materials. Section 4 presents the results and discussion of the
methods applied to multi-step-ahead flood forecasting. Conclusions are
then drawn in Section 5.

2. Methodology

This study proposes a LSTM-ED model to improve the reliability and
accuracy of multi-step-ahead flood forecasts. For comparison, a feed-
forward neural network-based Encoder-Decoder (FFNN-ED) is also
constructed. Fig. 1 illustrates the architecture of the LSTM-ED and
FFNN-ED models, where Fig. 1(a) presents the sequence-to-sequence
learning, Fig. 1(b) presents a prototype of an ANN neuron, Fig. 1(c)
presents the LSTM unit, and Fig. 1(d) and (e) present the frameworks of
the LSTM-ED and FFNN-ED, respectively. The methods adopted in this
study are briefly introduced as follows.

2.1. Sequence-to-sequence learning

Sequence prediction is commonly centered on forecasting the suc-
ceeding value in an observed sequence. Time series prediction problems
usually concern either of the two frameworks: 1) a sequence of one
input time step converted to a sequence of one output time step, or 2) a
sequence of multiple input time steps converted to a sequence of one
output time step. It will be more challenging to make a sequence pre-
diction when taking a sequence as the input, which is termed as a se-
quence-to-sequence prediction problem. A sequence-to-sequence pre-
diction problem involves an input sequence (S;) and an output sequence
(S,). The input sequence contains known information, and the output
sequence is the prediction target. Fig. 1(a) illustrates the sequence-to-
sequence learning. Input and output sequences generally have different
lengths, and the implementation process will require the entire input
sequence as soon as the prediction of the target start. This study es-
tablishes a prediction model M to convert the input sequence into the
output sequence. A sequence (S) is defined as a set of vectors (V;,) with
time series relationship.

Definition 1: Sequence

S={W V-,V (€8]

Vx = {Vn,l’ Vp,2s° “’vn,p} (2)
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where n is the length of the input time series (the lookback length of
time) and p is the number of elements (variables) in a vector.

Definition 2: Prediction model
So = M(S) 3)

In this study, the input sequences contain hourly data of ten rainfall
gauge stations and the inflow data of the Shihmen Reservoir collected
from the horizon t-n to the current time t. The output sequence is the
multi-step-ahead reservoir inflow. That is to say, this study intends to
establish a rainfall-runoff model for making reservoir inflow forecasts
based on antecedent rainfall and inflow data.

Definition 3: rainfall-runoff model

Si = {Ir—n> Tr—n—-1,""*, Lr-1, It} (€]
I = {ir1, 200 dip} 5)
So = {Or+1, Or42,°**, Orm} (6)
t,p,n,meN @)

where I denotes a vector of the input sequence S;, O denotes a vector of
the output sequence S,, t is the current time, n is the lookback length of
time, m is the forecast horizon, and p is the number of gauge stations
(rainfall or inflow in this study).

2.2. Long Short-Term Memory (LSTM) unit

The LSTM units have several architectures. A common architecture
comprises a core unit (the memory part) and three gate units (input,
output and forget gates) that direct the information flow inside the
LSTM unit (Fig. 1(c)). The computation steps of the LSTM are shown in
Egs. (8)-(16), referred from Hochreiter and Schmidhuber (1997).

(1) Combine the antecedent output vector with the input vector.
L=H_ +X (8)

where I, is the merged input vector that combines the antecedent
output vector H,_; with the input vector X;.

(2) Calculate the output vector of the core unit.
Y, = f,(WeeI + be) (C)]

where Y, and f, are the output vector and the activation function of the
core unit, respectively, W, is the connection weight, and b, is the bias of
the core unit.

(3) Calculate the output vectors corresponding to the units of the input
gate, the forget gate and the output gate.

Gi=f, (Wi oI; + by) (10)
Gr = fy (Wy oI + by) an
Go =fé (W)'It + bo) 12)

where G;, Gy and G, are the output vectors (gate values) obtained from
the input gate, forget gate and output gate units, respectively. The
weights (W, Wy, W,) and bias (b;, by, b,) are the parameters corre-
sponding to the three gate units. f, denotes the activation function of a
gate unit, and its output value falls between zero and one.

(4) Calculate the new cell state vector of long-term memory.

Y, =Gy, (13)
C' = Gr+Ciy a4)
CG=Y,+C, (15)
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where Y, is the raw output of the LSTM unit, and C', is the antecedent
cell state vector (C;_,) that is finely tuned by the forgot gate value (Gy).
C; is the new cell state vector of long-term memory, and it will return to
the LSTM unit when being reused. In this step, the cell state vector of
long-term memory gains new information but forgets some old in-
formation.

(5) Calculate the output vector of the LSTM unit.
H, = f,(C)+G, (16)

where H; is the output vector of the LSTM unit, and f, is the same
activation function as the one used in the core unit. The activation
function can stabilize the output value after the LSTM unit are reused
many times. The output gate value (G,) can control whether the LSTM
unit should produce an output or not. In addition, the cell state vector is
not affected by f, in this step such that it is much easy to keep the raw
output (Y';) of this LSTM unit for the next reuse.

2.3. Encoder-Decoder model

Encoder-Decoder (ED) models have been developed to effectively
tackle the challenging sequence-to-sequence prediction problems lately.
From the perspective of model architecture, an ED model has two im-
plementation phases: the first is to read the input sequence and encode
it into a fixed-length vector, and the second is to decode the fixed-
length vector and output the predicted sequence. The innovation of the
ED model is that the model facilitates a fixed-sized internal re-
presentation such that input sequences are read to and output se-
quences are read from. It was noticed that an ED model configured with
LSTM was developed to cope with natural language processing pro-
blems and achieved state-of-the-art performance in the text translation
field. This study intends to implement the ED architecture for trans-
lating the rainfall sequence into the runoff sequence, where the lengths
of the input sequence and the output sequence are fixed. The two ED
models with different encoders and decoders are introduced as follows.

2.3.1. FFNN-ED model

Fig. 1(d) illustrates the structure of the FFNN-ED model, which uses
the FFNN in the encoder and decoder schemes. The input sequences are
reshaped to a 1-dimensional vector before entering the encoder. Then
the encoder generates a 1-dimensional encoded vector (error vector)
and feeds it to the decoder. Finally, the decoder produces a 1-dimen-
sional vector of the output sequence. It is noted that the FFNN-ED
model servers as a comparative model in this study.

2.3.2. LSTM-ED model

The structure of the proposed LSTM-ED model is shown in Fig. 1(e).
This study utilizes the LSTM unit in the encoder and decoder schemes
for improving the learning of the continuity in input and output se-
quences. The LSTM unit will be reused many times for “reading” the
input sequence and “writing” the output sequence sequentially. The
numbers of times to reuse the LSTM units in encoding and decoding
schemes depend on the lengths of the input sequence and the output
sequence, respectively. For the encoding phase, the LSTM unit serves as
a “collector” for accumulating rainfall information. The LSTM unit can
well simulate the physical mechanism of the rainfall-runoff process, as
shown in the previous studies (e.g., Kratzert, et al., 2018). The process
of reading a vector in the input sequence one-by-one is similar to the
way that rain falls to the ground sequentially. Integrating information
through the recurrent architecture is similar to the concentration of
river flow with a time lag. Discarding the previous input information by
the forget gate (i.e., the LSTM computation step (4) in Section 2.2) is
similar to the hydrological phenomenon of precipitation loss and in-
filtration during the rainfall-runoff process. When the encoder reads a
vector, the LSTM unit will generate a temporary encoded vector. The
encoding process will repeat n times so that all the input vectors enter
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the LSTM to produce their corresponding encoded vectors. For the
decoding phase, the LSTM unit generates the output value of forecasted
discharge (i.e., the reservoir inflow) sequentially. The input to the
LSTM unit during the decoding phase is a vector that merges the final
encoded vector and the output value (reservoir inflow) of the previous
LSTM. It is noted that the currently observed reservoir inflow is used to
produce the output value of the LSTM at horizon of 1 h ahead (T + 1)
because there is no antecedent forecasted reservoir inflow at the be-
ginning of the decoding phase. The recurrent and sequential processes
(features) of the decoding phase that generates the output sequence is
similar to the continuity of river flow in a watershed. The LSTM unit fed
with the previous flow information can maintain the continuous feature
of flows, which is not available in the FFNN unit of the FFNN-ED model.
The advantage of the LSTM-ED model is that it can produce more stable
and less fluctuated output values. Therefore, this study expects the
LSTM-ED model can perform better than the FFNN-ED model.

2.4. Evaluation of model performance

This study adopts the root mean square error (RMSE), the coeffi-
cient of determination (R?), and the Nash—Sutcliffe model efficiency
coefficient (NSE) to evaluate the forecast results of the two ED models.
The RMSE value represents the error between the forecasted and the
observed values, and its unit is the same as the output value of the
model. The RMSE value ranges from O to infinity. A model with its
RMSE value closer to 0 implies that it can produce more accurate
forecasts. The RMSE can be calculated by the following equation.

1<
RMSE = = Y (d; — y)?
N gf = a7
where N is the number of samples, d; is the target output value, and y, is
the model output value.

The R? value is the proportion of the variance in the dependent
variable that is predictable by the independent variable(s), and it is
commonly used to evaluate the linear correlation between model out-
puts and target outputs. The R® value ranges from 0 to 1. A model with
its R? value closer to 1 implies it can predict more accurately.

The R? value can be calculated by the following equation.

2

o | T =)o - )
VI = dP B -y ) 18)

where d is the mean of target outputs, and )7 is the mean of model
outputs. Other symbols are consistent with those of Eq. (17).

The NSE is commonly used to evaluate hydrological prediction
models. The NSE value ranges from negative infinity to 1. A model with
NSE value closer to 1 implies it can predict more accurately. A model
with its NSE value less than 0 reveals it performs worse than a model
that produces mean values only. The NSE value can be calculated by the
following equation.

YL, di - w)?
S, (di— d)> 19)

where all the symbols are consistent with those of Egs. (17) and (18).

NSE=1 -

3. Case study and materials
3.1. Study area

The Shihmen Reservoir basin with an area of 763.4 km? is located in
northern Taiwan (Fig. 2). It has an annual average rainfall of 2504 mm
and an annual inflow of 1.47 billion m>. In this basin, 76% of rainfall
occurs within six months (May-October), with a high incidence of ty-
phoon events (Water Resources Agency, Taiwan, 2016). This is
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Fig. 2. Locations of the Shihmen Reservoir catchment area and rainfall gauge
stations.

consistent with typical rainfall-runoff characteristics in Taiwan.

3.2. Observational data

This study collected the monitoring records associated with 23 ty-
phoon events occurring from 2007 to 2016, including hourly rainfall
data of ten rainfall gauge stations and the inflow data of the Shihmen
Reservoir. Table 1 shows the information of typhoon events used in this
study. A total of 12,216 hourly data were allocated into three datasets
for model training (8232 from 13 events), validation (2688 from 6
events), and testing (1296 from 4 events). The training dataset was used
to adjust model parameters such as the weights and bias of the neural
network. The validation dataset was used to verify whether a model is
undertrained or overfitting. The test dataset was used to evaluate model
performance.

3.3. Model construction

After data pre-processing, the observational data were organized
into an input sequence and an output sequence. According to historical
rainfall-runoff data of this basin, the longest flood propagation time was
8 h. Therefore, the input sequence contained reservoir inflows and
hourly data (traced back to the previous 8 h of the current time) of ten
rainfall gauge stations. Considering the demand for the flood control of
the Shihmen Reservoir, the output sequence stepped into 1- up to 6-
hour-ahead reservoir inflow.

The FFNN-ED model behaved in a similar way to the BPNN model
with 30 neurons in the hidden layer (i.e., the length of the encoded
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Table 1
Typhoon events used in this study.

Dataset Typhoon Max. inflow (m®/s) Year Duration

Training SEPAT 1844 2007 08/07-09/12
SINLAKU 3447 2008 09/11-09/26
JANGMI 3292 2008 09/26-10/18
MORAKOT 1827 2009 08/04-08/24
FANAPI 1059 2010 09/17-10/07
MEGI 1 843 2010 10/16-11/07
MEARI 1060 2011 06/23-07/30
SOULIK 5458 2013 07/12-07/26
TRAMI 2410 2013 08/20-09/18
MATMO 1180 2014 07/21-08/22
FUNG-WONG I 323 2014 09/19-10/24
CHAN-HOM 917 2015 07/09-08/06
SOUDELOR 5634 2015 08/06-09/12

Validation WIPHA 2788 2007 09/17-10/02
KROSA 5300 2007 10/03-10/24
FUNG-WONG 2040 2008 07/26-08/08
PARMA 616 2009 10/03-10/31
SAOLA 5385 2012 07/29-09/03
USAGI 1195 2013 09/18-10/05

Testing JELAWAT 439 2012 09/27-10/07
FITOW 1393 2013 10/05-10/24
DUJUAN 3786 2015 09/27-11/03
MEGI II 4227 2016 09/26-10/02

vector), and it was trained by the Levenberg-Marquardt optimizer using
MATLAB 2018b. The number of neurons was determined by trial and
error. For comparison purposes, the length of the encoder vector for the
LSTM-ED model was also set as 30. The LSTM-ED model was im-
plemented in Python, where the Python library Keras and the Adam
optimizer compiling were used in the training stage, and the dropout
regularization was adopted to avoid overfitting.

4. Results and discussion

Three evaluation indicators were conducted to evaluate the per-
formance of the LSTM-ED and FFNN-ED models. To verify model re-
liability, this study also evaluated the model performance of four test
flood events. Finally, the impacts of the number of antecedent observed
data (model inputs) on model performance were investigated.

4.1. Evaluation of model performance

It was worth mentioning that the structures of LSTM-ED and FFNN-
ED models were different, so as their training algorithms. Therefore,
this study investigated the effectiveness and reliability of both models.
Considering the FFNN-ED model had no recurrent structure, the
Levenberg-Marquardt optimizer with the second-order training char-
acteristics was implemented because it could reduce errors faster than
the gradient descent optimizer with the first-order training character-
istics. In contrast, the LSTM-ED model has a complex recurrent struc-
ture, an optimizer (such as Adam) with the first-order training char-
acteristics can reduce the complexity of the training algorithm and
make the model easy to train. The first-order training algorithm,
however, required more iterations, and therefore the training time of
the LSTM-ED model was much longer than the FFNN-ED model. It is
noticed that the computation time of the LSTM-ED model is, on
average, about 20 times longer than that of the FFNN-ED model
(Computer specifications: Intel i7-6700 CPU, 16 GB Memory, and 1 TB
Storage. FFNN-ED: Matlab 2018b, Levenberg-Marquardt Optimizer,
and 3-5 min training time per round. (2) LSTM-ED: Python 3.6 with
Keras 2.2.4, Adam Optimizer, and 60-100 min training time per run).
The training time, however, is not the main issue to prohibit the utili-
zation of these models. According to the runtime records of the test
case, the computation time of the two constructed Encoder-Decoder
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Table 2
Performance of the FFNN- and LSTM-based ED models at horizons T + 1~ T + 6 for training, alidation and test datasets.
Model Dataset Time step RMSE R? NSE
Mean (Max — Min) Mean (Max — Min) Mean (Max — Min)
FFNN-ED Training T+1 48 (112-27) 0.99 (0.99-0.97) 0.97 (0.99-0.92)
T+ 2 49 (120-31) 0.99 (0.99-0.97) 0.97 (0.99-0.90)
T+ 3 53 (111-34) 0.98 (0.99-0.96) 0.97 (0.99-0.89)
T+ 4 57 (129-38) 0.98 (0.99-0.92) 0.97 (0.99-0.86)
T+5 65 (113-43) 0.97 (0.98-0.94) 0.96 (0.98-0.85)
T+ 6 85 (147-57) 0.95 (0.97-0.89) 0.93 (0.97-0.81)
Validation T+1 83 (194-54) 0.98 (0.99-0.94) 0.97 (0.99-0.93)
T+ 2 93 (137-69) 0.97 (0.98-0.94) 0.97 (0.98-0.93)
T+ 3 109 (156-83) 0.96 (0.97-0.92) 0.95 (0.97-0.91)
T+ 4 133 (182-106) 0.94 (0.96-0.89) 0.93 (0.96-0.87)
T+5 157 (212-129) 0.91 (0.94-0.85) 0.9 (0.94-0.83)
T+ 6 183 (295-144) 0.88 (0.92-0.78) 0.87 (0.92-0.75)
Testing T+1 83 (179-49) 0.97 (0.99-0.94) 0.96 (0.99-0.88)
T+ 2 99 (155-62) 0.96 (0.98-0.92) 0.95 (0.98-0.87)
T+ 3 120 (171-71) 0.94 (0.97-0.91) 0.92 (0.97-0.85)
T+ 4 139 (183-98) 0.92 (0.95-0.85) 0.9 (0.95-0.82)
T+5 171 (235-116) 0.87 (0.93-0.80) 0.84 (0.93-0.73)
T+6 208 (285-158) 0.81 (0.88-0.71) 0.77 (0.87-0.71)
LSTM-ED Training T+1 59 (88-41) 0.97 (0.99-0.94) 0.97 (0.99-0.93)
T+ 2 61 (77-46) 0.97 (0.98-0.96) 0.97 (0.98-0.95)
T+ 3 74 (94-56) 0.96 (0.98-0.93) 0.95 (0.97-0.92)
T+ 4 89 (112-67) 0.93 (0.96-0.89) 0.93 (0.96-0.89)
T+5 108 (128-86) 0.9 (0.94-0.86) 0.9 (0.94-0.86)
T+6 129 (150-110) 0.86 (0.90-0.81) 0.85 (0.90-0.81)
Validation T+1 68 (107-52) 0.99 (0.99-0.98) 0.98 (0.99-0.96)
T+ 2 73 (106-56) 0.98 (0.99-0.97) 0.98 (0.99-0.96)
T+ 3 85 (135-68) 0.98 (0.98-0.96) 0.97 (0.98-0.93)
T+ 4 109 (165-89) 0.96 (0.97-0.94) 0.95 (0.97-0.9)
T+ 5 137 (205-116) 0.94 (0.95-0.91) 0.93 (0.95-0.84)
T+6 163 (226-143) 0.92 (0.92-0.89) 0.89 (0.92-0.8)
Testing T+1 64 (82-51) 0.98 (0.99-0.97) 0.98 (0.99-0.97)
T+ 2 68 (101-56) 0.98 (0.99-0.98) 0.97 (0.98-0.95)
T+ 3 78 (90-64) 0.97 (0.98-0.97) 0.97 (0.98-0.96)
T+ 4 98 (115-76) 0.95 (0.97-0.93) 0.95 (0.97-0.93)
T+5 123 (154-87) 0.92 (0.96-0.88) 0.92 (0.96-0.88)
T+ 6 153 (195-111) 0.88 (0.94-0.80) 0.87 (0.94-0.80)

models (FFNN-ED and LSTM-ED) for on-line forecasting is less than
1 min. This study raised more concerns about the accuracy, stability,
and reliability of the constructed models instead. Therefore, both
models were trained 20 rounds (with different initial weights) using the
training datasets, and then model performances were evaluated by
validation and test datasets. The best model of each framework was
determined as the model that produced the highest R? value averaging
over six time steps in the validation stages. Finally, the best FFNN-ED
model was compared with the best LSTM-ED model.

The results (maximum, minimum, and mean values over 20 rounds)
of the FFNN-ED and the LSTM-ED models at each of the six horizons in
all three stages are shown in Table 2 and Fig. 3. It appears that both
models, in general, could be trained almost perfectly, in terms of very
small RMSE values and very high R? and NSE values at each horizon in
the training stages. In addition, the forecast errors of both models in-
creased as the forecast horizon increased, which was caused by the lack
of future rainfall information in the long forecast horizons. The results
of performance show that the FFNN-ED models, in general, perform
better than the LSTM-ED models in the training stages, but this is not
the case in validation and testing stages (in fact, their performances are
quite the opposite). The FFNN-ED models produced much larger error
ranges than the LSTM-ED models in all three stages. For the FFNN-ED
models, their mean values of the RMSE in the validation and testing
stages at the six horizons are 50% —250% higher than those of the
training stages. For the LSTM-ED model, the RMSE values are only
slightly higher in the validation and testing stages than in the training
stage. The results of performance showed that the LSTM-ED model re-
duced forecast errors (RMSE) by 3% up to 38% in the testing stages at

horizons 1 to 6 h ahead (T + 1 — T + 6), as compared to the FFNN-ED
model. Fig. 3 explicitly presents the detailed results (maximum, mean,
and minimum over 20 rounds) of both models at each of the six hor-
izons in all three stages. The results (20 rounds) of the constructed
LSTM-ED models are much more consistent than those of the con-
structed FFNN-ED models. The results of performance also showed that
the LSTM-ED model produced higher R? and NSE values than the FFNN-
ED model, especially true at long horizons (> 2 h) in the validating and
testing stages. These results support that the LSTM-ED model outper-
forms the FFNN-ED model, in terms of model stability, reliability, and
accuracy.

Fig. 4 shows the scatter diagrams of the best FFNN-ED and LSTM-ED
models for T + 6 forecasting in the training, validating, and testing
stages, respectively. The results of T + 6 forecasting show that both
models, in general, fit well to the observed data in all three stages, and
the LSTM-ED model has better performance (in terms of higher R? and
NSE values and narrowly dispersed points) than the FFNN-ED model in
the validating and testing stages. This is especially true in the testing
cases, as the study can easily conclude that the LSTM-ED model can
make more accurate T + 6 forecasting, especially under the conditions
of high flow (> 2000 cms), than the FFNN-ED model.

4.2. Evaluation of model reliability

According to the flood forecast results of the four test events shown
in Table 3, the LSTM-ED model is superior to the FFNN-ED model with
respect to RMSE, R?, and NSE values. The hydrographs (near the peak
flow) of observations and model forecasts at horizons T + 2, T + 4, and
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Fig. 3. Performance of FFNN- and LSTM-ED models (each was performed 20 rounds). (a)-(c) RMSE, R? and NSE at horizons T + 1 — T + 6, respectively. The range
of an evaluation indicator is presented by a bar, where the mean and the value corresponding to best model are marked by a dot (diamond: FFNN-ED, and square:

LSTM-ED) and a cross “+7”, respectively.

T + 6 are illustrated in Fig. 5. The first flood event induced by Typhoon
JELAWAT (total rainfall less than 67 mm, maximal inflow = 439 m®/s)
had the smallest magnitude. The performances of both models for this
event, however, are the worst, as compared to those of the other three
test events. As shown in Fig. 5(al) and (a2), both models under-esti-
mated peak flows.

The second flood event induced by Typhoon FITOW was also a
small-scale flood event, which was considered less hazardous to the
Shihmen Reservoir. Its maximal flow was 1393 mS/s, and the accu-
mulated rainfall in the basin during the first 48 h of the typhoon period

was 255 mm. Fig. 5(b1) and (b2) indicate that the LSTM-ED model
performs better in flow peak at horizons T + 2, T + 4, and T + 6.
Besides, the LSTM-ED model maintains similar performance at all the
three forecast horizons, yet the forecast error of the FFNN-ED model
increases significantly. Moreover, the LSTM-ED model can accurately
forecast the peak flow, whereas the FFNN-ED model underestimates the
peak flow.

The third flood event induced by Typhoon DUJUAN was a large-
scale flood event, and it was considered moderately hazardous. Its
maximal flow reached 3225 m®/s, and the accumulated rainfall in the
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Fig. 4. Scatter diagrams of the best FFNN-ED and LSTM-ED models for T + 6 forecasting.

basin during the first 48 h of the typhoon period achieved 389 mm.
Because there were multiple peaks in the rainfall distribution, the
forecasts obtained from both models were unstable and undulate in the
rising limb of the flood. The forecast results of both models at horizons
T+ 2, T+ 4,and T + 6 illustrated in Fig. 5(c1) and 5(c2) display
unstable forecasts and multiple peaks. The results of this flood event
forecasting show that the forecasting at horizons T + 4, unexpectedly,
performs better than the forecasting at horizons T + 2and T + 6. It is
observed from Fig. 5(c1) and (c2) that the interval between peaks in the
rainfall distribution spans approximately 4 h. This information may be
the key to solving flood forecasting problems suffering from multi-peak
rainfall distribution, which will be investigated in future research.
The fourth flood event caused by Typhoon MEGI II was a large-scale
flood event, and it was considered highly hazardous. Its maximal flow
reached 4227 m®/s, and the accumulated rainfall in the basin during
the first 48 h of the typhoon period achieved 443 mm. Table 3 indicates

that the LSTM-ED model is superior to the FFNN-ED model at horizons
T+ 2, T+ 4and T + 6. The RMSE value of the LSTM-ED model was
about 50% smaller than that of the FFNN-ED model at each horizon. In
addition, the R? and NSE values of the LSTM-ED model still exceeded
0.95 for all the three horizons. Fig. 5(d1) and (d2) clearly show that the
LSTM-ED model produces more accurate forecasts of peak flow than the
FFNN-ED model.

Overall, the LSTM-ED model not only can produce more accurate
forecasts on high flow, especially true for flood events induced by
single-peak rainfall distributions (e.g., MEGI II, FITOW), but also can
produce more stable forecasts on flood events of multi-peak rainfall
distributions (e.g., JELAWAT, DUJUAN), as compared with the FFNN-
ED model. The FFNN-ED model could easily learn the linear correlation
exhibiting in the rainfall-runoff process but failed to simulate the dy-
namics of the system effectively. Therefore, the FFNN-ED model either
seriously over-estimated or under-estimated peak flow and had an
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Table 3
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Performance of the FFNN- and LSTM-based ED models for flood forecasting at horizons T + 2, T + 4 and T + 6 in the test dataset based on four typhoon-induced

flood events at different scales.

Flood event Time step RMSE (m®/s) R? NSE Time shift in peak flow (hour)
FFNN LSTM FFNN LSTM FFNN LSTM FFNN LSTM
JELAWAT" T+ 2 42 20 0.93 0.96 0.80 0.96 0 0
T+ 4 34 29 0.89 0.91 0.87 0.90 4 2
T+6 51 40 0.79 0.83 0.70 0.82 12 3
FITOW" T+ 2 43 25 0.99 0.99 0.96 0.99 -1 -1
T+ 4 52 31 0.97 0.98 0.95 0.98 1 -1
T+ 6 57 40 0.94 0.97 0.94 0.97 3 0
DUJUAN® T+ 2 100 64 0.96 0.98 0.94 0.98 1 1
T+ 4 111 89 0.94 0.96 0.93 0.96 2 2
T+6 175 140 0.83 0.90 0.83 0.89 4 4
MEGI I T+ 2 133 145 0.98 0.98 0.98 0.97 0 -1
T+ 4 118 164 0.99 0.97 0.98 0.97 1 0
T+ 6 327 203 0.89 0.96 0.87 0.95 2 0

2 Typhoon JELAWAT with total rainfall of 67 mm and maximal flow of 439 m®/s.

Typhoon FITOW with total rainfall of 255 mm and maximal flow of 1393 m®/s.

¢ Typhoon DUJUAN with total rainfall of 413 mm and maximal flow of 3786 m®/s.
4 Typhoon MEGI II with total rainfall of 443 mm and maximal flow of 4227 m®/s.

obvious time-delay (time shift) problem. As for the LSTM-ED model, the
output flow value (e.g., T + i) of a LSTM decoder is recurrently fed into
the same decoder unit for making the forecast at the next horizon (e.g.,
T + i + 1). Therefore, the flow forecasts correlate with their previous
output flow. As described in Section 2.3, the process of information
flow of the LSTM structure is similar to the rainfall-runoff process. The
forecast reliability of the LSTM-ED model is significantly higher than
that of the FFNN-ED model throughout the rising limb, peak flow, and
the recession limb of a flood. In short, the LSTM-ED model not only
achieves a better outcome than the FFNN-ED model in simulating
complex rainfall-runoff processes but also improves the reliability and
accuracy of multi-horizon forecasting of flood events.

4.3. Impact assessment of input combination on model performance

This study reduced the length of the input sequence and identified
the impact of the length reduction on the two ED models. Fig. 6 illus-
trates the T + 6 forecast performance of the FFNN-ED and LSTM-ED
models with different input combinations. The results show that the
two models experience a continuous decrease in performance as the
length of the input sequence decreases, and this situation is notably
worse for the FFNN-ED model. The results of impact assessment show
that there is no significant difference in the performances of the LSTM-
ED model with input information spanning 8 (T — 7, ..., 0) down to 5
(T — 4, ..., 0) continuous hours. Besides, the FFNN-ED model performs
inferior to the LSTM-ED model under the same scenarios. Comparing
input information spanning 4 (T — 3, ..., 0) and 8 (T — 7, ..., 0)
continuous hours, the RMSE value increases by 20% while the R* and
NSE values decreases by 10% for the FENN-ED model. In contrast, the
RMSE value decreases by 10% while the R* and NSE values make no
significant changes for the LSTM-ED model. The results indicate that
the LSTM-ED model is able to achieve similar forecast performance
with less input information while the FFNN-ED model does have diffi-
culty in making such achievement. This study speculates that this is
because the recurrent architecture of the LSTM unit feeds the next input
vector with the output vector of the previous unit such that the model
can learn the temporal pattern in a continuous way.

5. Conclusions

This study proposes a LSTM-based Encoder-Decoder (LSTM-ED)
framework to model multi-step-ahead flood forecasting. The results
reveal that fusing the LSTM unit with sequence-to-sequence learning
into the ED model not only can improve the accuracy and reliability of

flood forecasting but also increase the interpretability of the framework
through translating the rainfall sequence to the runoff sequence.
Besides, the LSTM-ED model can better learn the rainfall-runoff process
and provide more reliable and accurate multi-step ahead forecasts than
the FFNN-ED. The findings of this study are summarized below.

(1) The FFNN-ED model can produce a small error and consume less
time in convergence during model training, but it suffers from un-
stable (wide variability) and overfitting problems. The LSTM-ED
model can reduce multi-step-ahead forecast error and significantly
mitigate the overfitting problem to provide more stable perfor-
mance. Still, it demands more time in training the model.

(2) In the flood forecasting of four test events, the time-delay at the
horizon of 6 h ahead (T + 6) for the LSTM-ED model is much
shorter than that of the FFNN-ED model. The LSTM-ED model not
only can make more accurate forecasts on high flow of flood events
induced by single-peak rainfall distribution but also can make more
stable forecasts on flood events induced by multi-peak rainfall
distribution, taking the FFNN-ED model as the benchmark.

(3) The LSTM-ED model plays an important role in modeling the
rainfall-runoff process for multi-step ahead flood forecasts, where
the LSTM unit in the encoder can effectively integrate sequential
rainfall patterns with watershed discharge while the LSTM decoder
can systematically and precisely forecast the flow sequence in a
continuous way.

(4) According the impact assessment of the length of the input se-
quence on model performance, the LSTM-ED model can produce
much better performances than the FFNN-ED model, especially
when being fed with less input information. This study speculates
that this is because the architecture of the LSTM unit feeds the next
input vector with the output vector of the previous unit such that
the model can learn the temporal pattern in a continuous way.

A barrier to applying the ANNs (or DNNs) is their black-box nature
that could not provide explicit internal representation of hydrologic
processes. In this study, the input sequence was translated into the
output sequence by configuring them into the LSTM-based Encoder-
Decoder learning framework and the implementation process of the
LSTM-ED model was linked with hydrological processes (i.e. the rain-
fall-runoff process), as discussed briefly in Section 2.3.2. We believe
that improving the reliability and accuracy of model performance and
increasing the interpretability of the network internals would increase
the trust in data-driven approaches and lead to more practices in hy-
drologic sciences.
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Fig. 5. Comparison of observed and forecasted inflows obtained from the FFNN- and LSTM-ED models at horizons T + 2, T + 4 and T + 6 for flood events

corresponding to Typhoons JELAWAT, FITOW, DUJUAN and MEGI II.

There are quite many sequence-to-sequence problems encountered
in hydrological fields. This study is only a case that applies the LSTM-
ED to modeling the rainfall-runoff problem. More extensive research on
hydrological disasters (e.g., regional flooding or drought) and water
resources management (e.g., inflow forecasting and groundwater esti-
mation) using the proposed methods can be explored in the future.
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