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A B S T R A C T   

Air quality profoundly impacts public health and environmental equity. Efficient and inexpensive air quality 
monitoring instruments could be greatly beneficial for human health and air pollution control. This study pro
poses an image-based deep learning model (CNN− RC) that integrates a convolutional neural network (CNN) and 
a regression classifier (RC) to estimate air quality at areas of interest through feature extraction from photos and 
feature classification into air quality levels. The models were trained and tested on datasets with different 
combinations of the current image, the baseline image, and HSV (hue, saturation, value) statistics for increasing 
model reliability and estimation accuracy. A total of 3549 hourly air quality datasets (including photos, PM2.5, 
PM10, and the air quality index (AQI)) collected at the Linyuan air quality monitoring station of Kaohsiung City 
in Taiwan constituted the case study. The main breakthrough of this study is to timely produce an accurate 
image-based estimation of several pollutants simultaneously by using only one single deep learning model. The 
test results show that estimation accuracy in terms of R2 for PM2.5, PM10, and AQI based on daytime (nighttime) 
images reaches 76% (83%), 84% (84%), and 76% (74%), respectively, which demonstrates the great capability 
of our method. The proposed model offers a promising solution for rapid and reliable multi-pollutant estimation 
and classification based solely on captured images. This readily scalable measurement approach could address 
major gaps between air quality data acquired from expensive instruments worldwide.   

1. Introduction 

Air quality is closely related to people’s daily life, and good air 
quality will lead to a healthy life. Unfortunately, air quality has gotten 
worse in recent decades, which has attracted much public attention. 
PM2.5 is considered a dangerous threat to human health because it can 
penetrate into the lungs through breathing without being trapped by the 
cilia in the respiratory tract (Li et al., 2020; Sugiyama et al., 2020; Tseng 
et al., 2019; Wang et al., 2018 & 2021; Zhang et al., 2019; Zhou et al., 
2018). Another important air quality indicator is the Air Quality Index 
(AQI) defined by the Environmental Protection Administration (TW 
EPA). AQI composed of six pollutants (PM2.5, PM10, O3, NO2, SO2 and 
CO) is a comprehensive index to reflect air pollution levels more 
objectively than an index merely involving a single air pollutant (Kumar 
and Goyal, 2011; Ruggieri and Plaia, 2012). With rapid industrial 
development and urbanization in recent decades, Taiwan inevitably 
encounters severe air pollution problems caused by industrial emissions 
and vehicular exhausts, especially in Kaohsiung City of southern Taiwan 

(Kow et al., 2020; Tsai et al., 2003). 
The severe threat of air pollution to human health makes air quality a 

focus of public attention, and timely air quality monitoring is critical to 
pollution control and greatly beneficial for human health protection. At 
present, air quality data collection relies mainly on monitoring stations. 
However, such in-situ monitoring is less feasible to carry out at the 
majority of areas of concerns due to the high material and set-up cost of 
sophisticated sensors, which becomes a big burden for poor or large 
countries (Rijal et al., 2018). Cost-effective image-based methods can 
serve as an auxiliary to monitor air quality at an ungauged area of in
terest or when air quality monitoring devices at gauge stations have 
malfunctioned. There have been various research efforts to develop 
inexpensive instruments for air pollution monitoring recently (e.g., 
Babari et al., 2011; Chakma et al., 2017; Zhang et al., 2016; Zhao et al., 
2019). 

Recently, in-depth machine learning (ML) has made significant 
breakthroughs in many aspects, such as voice and image, with increas
ingly prominent advantages. The convolutional neural network (CNN) is 
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regarded as one of the most commonly used ML methods extensively 
applied to image processing and computer vision research recently, with 
plausible performance in tackling several challenging tasks on estima
tion/classification (e.g., Bo et al., 2018; Giyenko et al., 2018; Kopp et al., 
2019; Soh et al., 2018; Vahdatpour et al., 2018; Wang et al., 2018; Yuan 

et al., 2020; Zhang et al., 2020; Zhong et al., 2019). In recent years, using 
ML techniques to analyze air quality has also received increasing 
attention (e.g., Chang et al., 2020; Zhou et al., 2019 and 2020), and 
several studies based on image processing have been carried out for the 
classification or estimation of PM2.5 concentrations (Li et al., 2015; Liu 

Fig. 1. Architecture of the CNN-FC deep learning approach (fusing the convolutional neural network with a regression classifier). (a) Convolutional layer. (b) Max- 
pooling layer. (c) Fully-connected layer. (d) Regression classifier. 
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et al., 2016; Chakma et al., 2017; Ma et al., 2018). Image-based air 
pollution estimation paves a promising direction, while only limited 
works have been carried out up to now. Therefore, it is worth exploring 
in-depth research on image-based air quality estimation for improving 
estimation reliability and accuracy. 

This study proposes a hybrid deep learning model (CNN− RC) that 
seamlessly integrates CNN and a regression classifier (RC) to simulta
neously estimate PM2.5 and PM10 concentrations and the AQI as well as 
classify these estimates according to pollution levels based on air quality 
photos (Fig. 1). Model inputs contain images and HSV (Hue, Saturation, 
Value) statistics for improving model reliability and estimation accu
racy. The HSV value denotes the correlation between HSV histograms of 
the current image and the baseline image. Therefore, the proposed 
approach is of a multi-input multi-output (MIMO) structure. Two CNN 
learning schemes utilized are VGG (Visual Geometry Group) and ResNet 
(residual network). The hybrid CNN− RC models built upon VGG and 
ResNet learning schemes with different input combinations are inde
pendently constructed. This study is organized to outline the study area 
and materials in Section 2, introduce the methods adopted in Section 3, 
show and discuss the image-based regression classification results in 
Section 4, and make concluding remarks in Section 5. 

2. Study area and materials 

2.1. Study area 

The worst air quality usually occurs in southern Taiwan, especially in 
Kaohsiung City, due to the increase in industrial activities and the 
number of vehicles. The Linyuan air quality monitoring station in 
Kaohsiung City is located in an industrial area, where several petro
chemical plants operate full day. The scene captured by the monitoring 
camera at this station for air pollution control purpose reflects pollution 
emissions from petrochemical operation, with main emission sources 
containing SOx, NOx, VOCs, PM2.5, PM10, CO2 and others. The Linyuan 
station is selected as our case study for the following reasons: 1) it is 
located in an industrial area with pollutant emissions from petrochem
ical production; 2) factory chimneys can be clearly identified from 
image collected; and 3) smoke from factory chimneys is clearly visible, 
and the difference in image clarity is observed between the baseline 
image and the image taken when air pollution occurs. 

2.2. Data collection and statistical analysis 

This study collected a large number of datasets, where each dataset 
composed a photo (image) and its corresponding air quality indexes 
(PM2.5, PM10, and AQI). The TW EPA provides a web-based open data 
platform with on-demand local air quality monitoring datasets acces
sible to the public, which greatly facilitates the collection of reliable data 
for research use. This study first implemented a Web crawler to extract 
from this open data platform hourly air quality monitoring images with 
corresponding data collected at the Linyuan station, spanning between 8 
p.m. on July 1st and 11 p.m. on November 30th in 2019. A total of 3549 
hourly datasets (=24 h × 153 days - 123 h (missing images due to 
problems of transmission, frontend (camera)/backend (storage facility) 
device malfunction, or else) were used for model construction. Models 
were constructed based on daytime (6 a.m.− 6 p.m.) and nighttime (7 p. 
m.− 5 a.m.) images separately. 1946 datasets out of 3549 datasets were 
categorized as daytime datasets, where 1556 datasets (80%) and 390 
datasets (20%) were used for training and testing, respectively. The 
remaining 1603 datasets were categorized as nighttime datasets, where 
1282 datasets (80%) and 321 datasets (20%) were used for training and 
testing, respectively. The collected dataset is available on the website 
http://hyinfo.bse.ntu.edu.tw/apci/. 

Table 1 presents the results of the statistical analyses on air quality 
data used in this study. The results indicate that the classification of air 
quality images for the Linyuan station should be very challenging due to 

high variations in concentration. Furthermore, the statistical results of 
daytime and nighttime datasets imply that emission mechanisms should 
have a significant difference between daytime and nighttime. According 
to the mean and standard deviation values, PM2.5 had slightly larger 
values in the daytime than in the nighttime, whereas PM10 and AQI, has 
higher values in the nighttime. Furthermore, the collections of colors in 
daytime and nighttime images are very different. Daytime images are 
more colorful than nighttime images (close to black-and-white). 
Therefore, we decided to establish hybrid deep learning models based 
separately on daytime and nighttime datasets. 

3. Methodology 

3.1. Problems and motivations 

Image-based regression classification can serve as an auxiliary 
technique to monitor air quality at ungauged areas or when monitoring 
devices have malfunctions. Our goal was to estimate multiple pollutants 
and classify the estimates simultaneously based on the images collected 
at the Linyuan station. We proposed a hybrid deep learning model 
(CNN− RC) that integrated CNN and a regression classifier (RC) based on 
multiple inputs (photos) and their HSV statistics) for estimating/classi
fying multiple air pollutants (PM2.5, PM10, and AQI). Two CNN learning 
schemes (ResNet and VGG) with weight adjustment were utilized. Fig. 2 
illustrates the architectures of the RNH (ResNet-HSV) scheme (Fig. 2(a)) 
and the VNH (VGG-HSV) scheme (Fig. 2(b)). The methods used in this 
study are briefly introduced as follows. 

3.2. Convolutional neural network (CNN) 

The CNN is a type of feed-forward ANNs configured by a deep 
learning algorithm. It has been widely used in image processing, video 
recognition, and time series forecasting (Bai et al., 2019; Hamrani et al., 
2020; Hatami et al., 2018; Kow et al., 2020; Milošević et al., 2020; 
Persello et al., 2019; Pyo et al., 2019; Qian et al., 2020; Wang et al., 
2021; Yu et al., 2020; Zhang et al., 2017). The implementation of the 
CNN is briefly introduced below. 

In this study, there are 3549 samples collected from the Linyuan 
station. The filtering process of each CNN− RC model was conducted on 
each sample, where the number of filters varied from model to model. It 
is noted that the CNN has a concept of “weight sharing”, that is to say, a 
filter does not change its weight values when screening each sample 
during the training stage. This leads to lesser parameters required during 
model construction for the CNN than for other feed-forward ANNs. As a 
result, the CNN is easier to train and can avoid overfitting, which makes 
the CNN an attractive deep learning algorithm. The max-pooling layer 
that filtrates the maximum value from each screen is usually connected 
behind a convolutional layer. 

Table 1 
Results of statistical analyses on hourly air quality data for the Linyuan air 
quality monitoring station (July 1, 2019− November 30, 2019).   

Indicator PM2.5 (μg/m3) PM10 (μg/m3) AQI 

Daytime Mean 20.79 45.51 67.07 
Max 64.00 305.00 185.00 
Min 0.00 0.00 13.00 
Stda 11.70 24.54 32.71 

Nighttime Mean 20.61 47.79 71.44 
Max 59.00 305.00 192.00 
Min 1.00 7.00 16.00 
Std 11.25 26.43 35.90 

Whole day Mean 20.71 46.54 69.05 
Max 64.00 305.00 192.00 
Min 0.00 0.00 13.00 
Std 11.50 25.43 34.25  

a Standard deviation. 
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Fig. 2. CNN− RC deep learning approach in a hybrid architecture. (a) RNH (RESNET-HSV) scheme. (b) VNH (VGG-HSV) scheme.  
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A filter window determines the number of pixels in an image to 
screen at a time. Because this study utilized a two-dimensional CNN 
(Fig. 1(a) and (b)), the length of the filter window was the only 
parameter to determine (Table 2). The number of connections between 
the input layer and the convolutional layer conforms to the length of the 
filter window, while there is only one connection between the con
volutional layer and the output layer (feature map). More details of the 
CNN can be found in Chen et al. (2019). 

3.3. Fully connected layer and regression classifier 

In this study, the final max-pooling layer of the CNN− RC approach 
was followed by three fully connected layers (Fig. 1(c)), in accordance 
with three outputs. A fully connected layer enables two main actions: 
propagation and weight adjustment. Propagation involves both forward 
propagation and backward propagation. In the forward propagation, 
each input signal is assigned a weight by the activation function (i.e., the 
ReLU function in this study) in the hidden layer, and then the weighted 
signal is passed to the output layer for calculating the output value. Next, 
a backward propagation follows if the difference between the output 
value and the target output value falls outside the tolerable error range. 
The network training stops when the error falls within the tolerable 
error range. Furthermore, a regression classifier is linked to the end of 
the CNN to generate regression outputs to be classified into different 
pollution levels (levels 1, 2, 3, and 4). 

3.4. Hybrid of CNN and regression classifier 

The proposed CNN− RC model that seamlessly fuses CNN with a 
regression classifier aims to classify multiple outputs, and its two-phase 
implementation engages feature extraction by CNN and multi-output 
estimation by the regression classifier (Fig. 1). The CNN is so powerful 
a tool for feature extraction that the similarity in patterns among sam
ples can be considered as an auxiliary to classify air quality. Following 
feature extraction, the flatten layer links the feature map of the con
volutional layer with the fully connected hidden layer to reshape each 
multi-dimensional input into a one-dimensional vector. Then, the fully 
connected hidden layer and the output layer constitute the CNN− RC 
model’s estimation phase. We set up three neurons in the output layer 
for producing three-dimensional outputs simultaneously (i.e., PM2.5 and 
PM10 concentrations as well as AQI). 

3.4.1. Hue, saturation and value (HSV) 
In color image processing, HSV is one of the commonly used color 

models. HSV stands for hue, saturation, and value. The hue is the color 
type of an image and is normally expressed as a number from 0 to 360◦, 
where each degree corresponds to one color. The saturation is the 

intensity of the color and is expressed by a number between 0 and 1 (0: 
no color; and 1: primary color). The value is the brightness and ranges 
between 0 and 1 (0: black; 1: brightest (white)) (Cantrell et al., 2010; 
Ngoc et al., 2019; Sural et al., 2002). In this study, the correlation (R2) of 
the current image and the baseline image was calculated based on their 
HSV statistics, and then the correlation value became another input to 
the CNN− RC approach for enhancing model accuracy. 

3.4.2. RNH (ResNet-HSV) scheme 
ResNet, one of the famous CNN architectures, comprises several re

sidual blocks and fully connected layers (Fig. 2(a)). A residual block is 
composed of two convolutional layers, where the input of the block is 
passed to the next layer by skipping the convolutional layers in between 
and then is summed with the input of the next layer. The function of the 
residual block is to avoid the problem of vanishing gradient for 
increasing classification accuracy (He et al., 2016; Kälin et al., 2019; Wu 
et al., 2019). In the fully connected phase, the HSV correlation value is 
concatenated with the output of the flatten layer, where air quality 
estimation are carried out. 

The ResNet-HSV scheme is constructed by stacking the convolutional 
layer and the dense layer. The inputs (e.g. the current and the baseline 
images) are fed into the convolutional layer, and image features are 
extracted by the filter that screen images (Fig. 1(a)). The HSV correla
tion is fed into the flatten layer and concatenated with the flatten output 
of the convolutional layer (Fig. 1(c)). Consequently, the outputs (esti
mations) of PM2.5, PM10 and AQI from the final dense layer are then 
converted into different classes (Fig. 1(d)). In this study, three ResNet 
models were built based on different input combinations: ResNet (RN); 
ResNet-HSV (RNH); and simplified ResNet-HSV (SRNH), as shown in 
Table 2. Besides, ResNet6 (RN6) had 6 residual blocks. This naming style 
was applied to ResNet8 (RN8), ResNet10 (RN10), and else. 

3.4.3. VNH (VGG-HSV) scheme 
The use of building blocks was first proposed by the Visual Geometry 

Group (VGG) from Oxford University. The implementation of building 
blocks in the formation of repeated sequences in code with deep learning 
architecture through loops and subroutines is easy. VGG is made up of 
several VGG blocks and fully connected layers (Fig. 2(b)). A VGG block 
consists of two or three convolutional layers, and the end of the block is 
joined by a max-pooling layer. The advantage of VGG is that this scheme 
has small filters and pooling windows, which allows it to build a deeper 
model. A deeper model can learn more information from each input 
image and gain a higher possibility to improve classification accuracy 
(Jun et al., 2018; Li et al., 2020; Wang et al., 2015). Similar to RNH, the 
HSV correlation value is concatenated with the output of the flatten 
layer in the fully connected phase, where air quality estimation and 
classification are carried out. 

The VGG-HSV scheme is constructed by stacking the convolutional 
layer, the max pooling layer, and the dense layer. The inputs (e.g. the 
current and the baseline images) are fed into the convolutional layer, 
and image features are extracted by the filter that screen images (Fig. 1 
(a)). The extracted feature map then enters the max pooling layer. The 
HSV correlation is fed into the flatten layer and concatenated with the 
flatten output of the max pooling layer (Fig. 1(c)). Consequently, the 
outputs (estimations) of PM2.5, PM10 and AQI from the final dense layer 
are then converted into different classes (Fig. 1(d)). The VGG-HSV 
scheme has the same training procedure as the ResNet-HSV scheme. 
Three models of VGG were also built based on different input combi
nations: VGG (VN); VGG-HSV (VNH); and simplified VGG-HSV (SVNH) 
as shown in Table 2. This naming style of ResNet was applied to VGG, e. 
g. VN4, VN6, and else. 

3.5. Evaluation indicators 

We used three indicators to evaluate model performance, which were 
the Root Mean Square Error (RMSE), MAPE (Mean Absolute Percentage 

Table 2 
CNN− RC model description.  

Deep Learning 

Architecture Convolution Neural Network w/Regression Classifier (CNN− RC) 

Type Residual Network (ResNet) VGG Net (Visual 
Geometry Group Net) 

Layers 6, 8, 10, 12 4, 6, 8, 10     
Model RNa RNH

b  SRNH
c  VNd  VNH

e  SVNH
f  

Model inputs       
Current image ✓ ✓ ✓ ✓ ✓ ✓ 
Baseline image ✓ ✓  ✓ ✓  
HSV value  ✓ ✓  ✓ ✓  

a ResNet. 
b ResNet-HSV. 
c Simplified ResNet-HSV. 
d VGG. 
e VGG-HSV. 
f Simplified VGG-HSV. 
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Error), and the coefficient of determination (R2). The formula of the 
three indicators are given below. 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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)2
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where oi denotes observed data, pi denotes estimated values, and L de
notes the data length. 

4. Results and discussion 

The CNN− RC model was proposed to estimate and classify air 
quality. Two types of CNN learning schemes (ResNet and VGG) were 
employed for comparison purpose. The results and findings were pre
sented in the order of data preprocessing, model parameter setting, and 
model comparison, shown as follows. 

4.1. Data preprocessing 

A total of 3549 datasets (color images and their corresponding air 
quality monitoring data) were used for model training (80%) and testing 
(20%). The original dimension of each image was 1280 × 720. After pre- 
processing, the (input) dimension of each image was reduced to 224 ×
224, where image pre-processing engaged removal of insignificant 
boundaries and preservation of useful parts of each image. In other 
words, this classification problem needs to tackle the curse of dimen
sionality induced by high dimensional datasets (3549 images with 224 
× 224 dimensions). Such modelling is a computation-intensive task. 
Therefore, we proposed a deep learning framework to handle this clas
sification. Our computation also benefited from Graphics Processing 
Units (GPUs). Besides, to well train a deep network, it is necessary to find 
the most suitable depth (the number of layers) of the network to avoid 
underfitting or overfitting. For instance this study considered 6, 8,10, 
and 12 layers for the ResNet and 4,6,8, and 10 layers for the VGG Net. It 
is also crucial to explore more information of each image to assist model 
construction. In this study, HSV correlation between the current image 
and the baseline image was considered to be extra information adopted 
in training and testing phases. 

4.2. Model parameter setting 

Table 3 presents the parameter settings of CNN− RC models. The VN 
series consisted of VN4, VN6, VN8, and VN10 only because overfitting 
would occur when more building blocks are employed. Similarly, the RN 
series contained RN6, RN8, RN10, and RN12. The learning rate of both 
models were set to be 0.0001 through trial and error. A small learning 
rate may lead to a local optimum. The batch size of both models was set 
to be 8. Batch size refers to the number of training samples utilized in 
one iteration. The larger the batch size, the faster the training speed. The 
kernel size of each filter was set to be 8, which meant the filter length 
and width were 8. Patience (early stopping) was set to be 8, which meant 
the training process of the model would terminate earlier if no further 
reduction in the error was made after 8 consecutive iterations. An early 
stopping mechanism allows a model to avoid overfitting problems. 

4.3. Comparison of different CNN− RC architectures for image-based air 
quality regression classification 

4.3.1. Model selection 
Table 4 gives the comparison of six CNN− RC models constructed 

based on daytime and nighttime datasets separately, where ResNet and 
VGG are the two main CNN training schemes with three input combi
nations. The comparative results indicate that the SRN6H and SVN6H 
models (inputs: current image and HSV correlation value) performed the 
best in the daytime and nighttime cases, respectively, because they 
produced the majority of the highest R2 and the lowest RMSE values. 
Moreover, the SVN6H model was superior to the SRN6H model. The 
reasons are that daytime images (more colorful) contain more useful 
information than nighttime images (less colorful), while nighttime im
ages usually contain noises because the camera would recommend a 
long exposure due to insufficient light intensity in the nighttime. The 
reason for the SRN6H model to serve as the most adaptive model for the 
daytime case is due to its ability to retain the properties of the previous 
layer. In other words, this model can more effectively learn deeply and 
extract useful information from higher-dimensional datasets, as 
compared to VGG6-related models. The reasons for the SVN6H model to 
serve as the most adaptive model for the nighttime case are that night
time images are in general nearly black-and-white and contain less in
formation than daytime images (more colorful). Therefore, a shallower 
and simpler model like SVN6H might be more suitable to apply in the 
nighttime. Besides, VGG models implemented max-pooling in each 
building block, which could effectively decrease the input dimension 
and reduce the noise of each building block. 

Whether it was daytime or nighttime image, the best models (SRN6H 
and SVN6H) have two inputs, i.e., the current image and the HSV cor
relation value. The reason not to include the baseline image as a model 
input is that its high dimensionality would cause noises during model 

Table 3 
Parameter settings of CNN− RC models constructed in this study.  

Model Parameters 

Epochs Number of filters/neurons Learning 
rate 

Batch 
size 

Kernel 
size 

Patience (Early 
stopping) 

Optimizer 

VN6 
seriesa 

50 64 filters (VGG block), 128 filters (VGG block), 256 filters (VGG block), 16 
neurons (FCc layer), 3 neurons (FC layer) 

0.0001 8 8 8 Adam 

RN6 
seriesb 

50 64 filters (2 Convd layer), 64 filters (ResNet block), 64 filters (ResNet block), 
16 neurons (FC layer), 3 neurons (FC layer) 

0.0001 8 8 8 Adam 

VGG4, VGG6 and VGG8 have two, three and four VGG type 1 blocks, respectively. 
VGG10 has two VGG type 1 blocks and two VGG type 2 blocks. 
ResNet6, ResNet8, ResNet10 and ResNet12 have two, three, four and five ResNet blocks, respectively. 

a Consist of VN6, VN6H, and SVN6H. 
b Consist of RN6, RN6H, and SRN6H. 
c FC: Fully-connected. 
d Convolutional. 
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training. In contrast, the HSV correlation value is numeric, i.e., a rela
tively low dimension. The calculation of the HSV correlation value is 
equivalent to noise removal from images and can extract the difference 
between the current image and the baseline image effectively. 

Therefore, models that adopted the HSV correlation value could 
improve estimation/classification accuracy. 

Table 4 
Performance (R2 and RMSE) of 6 CNN− RC models constructed separately based on daytime datasets (images) and nighttime datasets (images) of the Linyuan air 
quality monitoring station.  

Datasets Model PM2.5 (μg/m3) PM10 (μg/m3) AQI 

Training Testing Training Testing Training Testing 

Daytime (6 a.m.− 6 p.m.) RN6 0.6a (7.6b) 0.7 (7.4) 0.5 (19.0) 0.5 (18.8) 0.6 (20.8) 0.6 (19.5) 
RN6H  0.6 (8.0) 0.7 (7.5) 0.5 (20.1) 0.5 (16.6) 0.8 (15.6) 0.7 (17.5) 
SRN6H

c  0.8 (5.9) 0.7 (6.8) 0.5 (17.7) 0.5 (16.6) 0.8 (15.6) 0.7 (18.4) 
VN6 0.7 (6.5) 0.6 (7.1) 0.6 (17.8) 0.5 (16.8) 0.8 (15.8) 0.7 (18.3) 
VN6H  0.7 (7.4) 0.7 (7.2) 0.5 (18.2) 0.5 (16.5) 0.8 (16.4) 0.7 (17.4) 
SVN6H  0.7 (6.9) 0.6 (7.7) 0.5 (18.4) 0.5 (16.5) 0.7 (17.3) 0.6 (19.6) 

Nighttime (7 p.m.− 5 a.m.) RN6 0.8 (5.6) 0.7 (6.3) 0.9 (11.4) 0.7 (14.7) 0.9 (10.3) 0.8 (16.8) 
RN6H  0.9 (4.6) 0.7 (6.1) 0.8 (13.7) 0.7 (16.1) 0.9 (15.1) 0.8 (19.0) 
SRN6H  0.4 (10.1) 0.5 (9.8) 0.8 (15.2) 0.6 (17.9) 0.8 (22.7) 0.7 (26.1) 
VN6  0.9 (4.0) 0.8 (5.9) 0.9 (9.0) 0.7 (14.5) 0.9 (9.7) 0.8 (17.3) 
VN6H  0.8 (6.1) 0.7 (7.0) 0.9 (9.3) 0.7 (14.1) 0.9 (10.0) 0.8 (16.9) 
SVN6H  0.9 (3.4) 0.8 (5.4) 0.9 (7.5) 0.7 (14.6) 0.9 (9.3) 0.8 (17.1)  

a R2 value. 
b RMSE value. 
c Best models and optimal values are marked in bold. 

Fig. 3. Performance of SRNH (simplified ResNet-HSV) model that are 6, 8, 10 and 12 layers deep based on the daytime input images of the Linyuan air quality 
monitoring station. (a) R2 between observed and estimated air quality. (b) RMSE between observed and estimated air quality. 
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4.3.2. Determination of the optimal number of building blocks 
Following the results of Table 4, this study further explored the 

optimal number of building blocks for the SRNH and SVNH models in the 
interest of improving classification accuracy. Fig. 3 shows that the 
SRN10H model, in general, outperformed (highest R2 and lowest RMSE 
values, except for PM2.5) the other three models for the daytime case. 
Fig. 4 reveals that the SVN6H model performed better (highest R2 and 
lowest RMSE values, except for AQI) than the other three models for the 
nighttime case. In brief, the SRN10H and SVN6H models are considered 
the best models for the daytime and nighttime cases, respectively. 

4.3.3. Classification performance 
Table 5 shows the four pollution levels of each output (PM2.5, PM10, 

and AQI) for classification purpose in this study. Air quality standards 
for PM2.5, PM10, and AQI established by the TW EPA based on moving 
average values of pollutant concentrations can refer to EPA (2020). This 
study alternatively classified images into pollution levels based on the 
estimates of PM2.5 and PM10 concentrations and AQI, rather than their 
moving average values. 

Table 6 shows the classification results of the SRN10H model based 
on the daytime images (1556 training datasets and 390 test datasets). 
The classification accuracies in training (testing) stages were 86% (76%) 
for AQI, 87% (84%) for PM10, but a bit low (79% (76%)) for PM2.5. 
Table 6 also shows the classification results of the SVN6H model based 
on the nighttime images. The classification accuracy of PM2.5 achieved 
87% and 83% in the training and testing stages, respectively. PM10 had 

classification accuracies of 93% and 84% in the training and testing 
stages, respectively. The classification accuracy of AQI reached 89% and 
74% in the training and testing stages, respectively. In addition, classi
fication accuracy was higher in the nighttime than in the daytime. It 
seemed that colorfulness in images did not provide useful information 
for this image classification problem. Classification of air quality image 
is considered more dependent on the smoke size and density as well as 
the clearness of the image. For example, the model can well estimate 
pollutant concentrations when the image is less clear and shows much 
smoke, CNN considers there is air pollution. 

Regardless of daytime and nighttime, there was an obvious under
estimation of air pollutants under the severe, harmful condition (i.e., 
level 4), especially true for PM2.5. This was because deep learning 
required a lot of data to learn, whereas there were only very few training 
data (PM2.5: 8 and 7 images for daytime and nighttime, respectively; and 
AQI: 30 and 49 images for daytime and nighttime, respectively) in level 
4. Besides, the estimation of PM10 concentration was the most accurate, 

Fig. 4. Performance of SVNH (simplified VGG-HSV) model that are 6, 8, 10 and 12 layers deep based on the nighttime input images of the Linyuan air quality 
monitoring station. (a) R2 between observed and estimated air quality. (b) RMSE between observed and estimated air quality. 

Table 5 
Classification level of AQI, PM2.5 and PM10 (according to TW EPA standard: htt 
ps://taqm.epa.gov.tw/taqm/en/b0201.aspx).  

Pollution Level AQI PM2.5 (μg/m3) PM10 (μg/m3) 

Level 1 (Good) 0–50 0.0–15.4 0–54 
Level 2 (Moderate) 51–100 15.5–35.4 55–125 
Level 3 (Unhealthy) 101–150 35.5–54.4 126–254 
Level 4 (Very Unhealthy) 151+ 54.5+ 255+

P.-Y. Kow et al.                                                                                                                                                                                                                                 
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Table 6 
Classification results of the SRN10H and SVN6H models based on daytime images and nighttime images. 
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as compared to those of PM2.5 concentration and AQI, which proves the 
black smoke in images has relatively high correlation with PM10. Table 6 
shows that the regression classification of images produced better results 
for AQI than for PM2.5 and PM10. This could be because AQI is a 
comprehensive indicator and can objectively reflect the degree of 
environmental pollution. 

Fig. 5 shows the results of air quality (PM2.5, PM10 and AQI) esti
mated continuously by SVN6H for nighttime and SRN10H for daytime 
during October 15th, 2019 and October 30th, 2019 to observed data. In 
addition, three enlarged plots presented on the right-hand side of each 
subfigure were given to clearly show the models’ performance at three 
selected times that were adopted in Figs. 7 and 8 as well, where sig
nificant variations in value (concentration or AQI index) occurred. In 
general, both models could well keep the tracks and produce accurate 
estimation even though the value changed drastically. Nevertheless, 
there were occasions difficult to estimate. For instance, the PM2.5 trend 
was captured but PM2.5 was underestimated on October 27th. Similarly, 
PM10 was underestimated on October 21st. 

4.3.4. Discussion on air quality images 
Table 1 indicates that the pairs of (mean, standard deviation) for 

PM2.5, PM10, and AQI at the investigative station are (20.7, 11.5) μg/m3, 

(46.5, 25.4) μg/m3, and (69.1, 34.3), respectively. These mean values 
are far away from their individual lower limits of level 4, which are 54 .
5 μg/m3, 255 μg/m3, and 151 for PM2.5, PM10, and AQI, respectively. 
Recognizing the difficult, if not impossible, problem related to the pre
cise classification of the extreme (harmful) conditions with high varia
tions in concentrations of air pollutants and only very limited datasets in 
level 4, the analytical results produced by the proposed model could be 
beneficial and useful in practice. 

Table 4 shows the smallest RMSE values for PM2.5, PM10, and AQI 
based on daytime (nighttime) images in the test phase were 6.8 (5.4), 
16.6 (14.1), and 17.5 (16.9), respectively (Table 4). It appears that the 
estimation errors of the proposed approach were much smaller than the 
standard deviation (about half) of their corresponding pollutants. These 
results suggest that the proposed CNN-RC approach has a great potential 
to accurately real-time estimate and/or classify multiple air pollutants 
based solely on in-situ photos. Nevertheless, there were still several 
misjudgements, and they deserved to have a close check. 

Figs. 6 and 7 show a total of twelve photos representative of well- 
classified and poorly-classified images for PM2.5, PM10, and AQI in the 
daytime case (SRN10H) and in the nighttime case (SVN6H). It is observed 
that CNN models could well recognize images that are less clear and 
have much smoke. This could be because the weights of the model could 

Fig. 5. Air quality estimation performance of SVN6H (nighttime) and SRN10H (daytime) during October 15th and October 30th of 2019, in comparison with observed 
data. (a) PM2.5. (b) PM10. (c) AQI. 
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be trained by the smoke and the clearness of images. Taking Fig. 6(b1) as 
an example, the estimate of PM2.5 concentration was classified into level 
1, which resulted in a huge classification error (observed concentration 
falls into level 4). The model apparently misjudged this image because it 
is very clear and does not have much smoke. Therefore, it is not sur
prising why the classification result of Fig. 6(b1) had a huge error (− 3), 
i.e., underestimated. PM10 concentration in Fig. 6(b2) was also under
estimated (error = − 2). This image is slightly blurry, but the model 
could not distinguish clouds from smoke in the sky. From Fig. 6(b3), AQI 

was also underestimated (error = − 2). This image shows blurs but has 
little smoke. 

In contrast, Fig. 6(a1), 6 (a2), and 6 (a3) present well-classified im
ages in the daytime case, where blurriness can be observed, as compared 
to Fig. 6(b1). Therefore, the CNN model could classify these images 
accurately. As for the nighttime case, PM2.5 concentration in Fig. 7(b4) 
was underestimated and had a classification error of − 2. The CNN model 
made a misjudgment on this image because it is very clear and has a bit 
of smoke only. Fig. 6(b2) reveals that PM10 concentration was also 

Fig. 6. Air quality classification results for PM2.5, PM10 and AQI based on the daytime images of the Linyuan air quality monitoring station. The image in each sub- 
figure was selected according to the * item. 1 Observation value. 2 Estimation value. 
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underestimated and misclassified into level 1, which caused a huge error 
of − 2 (observed concentration fell into level 3). It seems there were no 
obvious classification errors for AQI. It is worth noting that a classifi
cation error occurred in Fig. 7(b6) even though the estimated AQI (54.2) 
was quite close to the upper limit (50) of level 1. 

Fig. 7(a4) 7 (a5), and 7 (a6) also show nice classification results 
(error = 0), where the flow of smoke is clearly visible. Besides, the image 
in Fig. 7(a6) is somewhat blurry. It is apparent that the proposed model 
can well classify non-defective images accurately even though it is in the 

nighttime. 
We next take a close look at the relationship between PM2.5, PM10, 

and AQI. According to the observed PM2.5 and PM10 concentrations in 
Fig. 6(a1), 6(b1), 7(a4), and 7 (b4), we notice that PM10 concentration 
was high when PM2.5 concentration was high. However, high PM10 
concentration did not necessarily correspond to high PM2.5 concentra
tion (Fig. 6(b2) and 7 (b5)). Besides, the observed AQI values in Fig. 6 
(a3), 6(b3), 7(a6), and 7 (b6) had no obvious relationship with PM2.5 
and PM10 concentrations. Fig. 6(a1), 6(a2), 7(a4), and 7 (a5) show that it 

Fig. 7. Air quality classification results for PM2.5, PM10 and AQI based on the nighttime images of the Linyuan air quality monitoring station. The image in each sub- 
figure was selected according to the * item. 1 Observation value. 2 Estimation value. 
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is difficult to have an intuitive look at the relationship between AQI with 
PM2.5 and PM10. This is because AQI is a composite index converted 
from six pollutants, including PM2.5, PM10, SO2, NO2, CO, and O3. It is 
observed that high AQI values occurred when the concentrations of 
PM2.5 and PM10 were high. Furthermore, the formation of PM2.5 and 
PM10 in the air may not happen until particulate matters react with 
climatic factors and other chemical substances in the air. These reasons 
may explain the estimation accuracy with regard to PM2.5, PM10, and 
AQI for the images in Figs. 6 and 7. 

Furthermore, the reason for poor estimation shown in Figs. 6 and 7 is 
also related to the composition of the emissions, which are obviously 
associated with petrochemical production. The patterns of poor esti
mates are similar in Fig. 6(b1) and 6 (b2) as well as Fig. 7(b4) and 7 (b5), 
where both models underestimated the concentrations of PM2.5 and 
PM10. However, the AQI value was well-estimated. We speculate that 
the main substances of the emissions from the chimneys at that time 
were not PM2.5 or PM10 but were more likely to be SOx, NOx, or other 
pollutants from petrochemical production. 

4.3.5. Discussion on extracted features from images 
We next explore how the proposed network extracted the air quality 

features contained in the images. Fig. 8 shows the outputs of different 

residual blocks based on the daytime (SRN10H) and nighttime (SVN6H) 
images taken at 2019/03/03 10am and 2019/10/31 4am, respectively, 
at the Linyuan air quality monitoring station. For the daytime image, the 
output of the first residual block contains low level feature, where the 
edge of smoke is quite obvious but the edges of clouds are scarcely 
distinguishable. It is rather difficult to identify chimneys, too. In 
contrast, the output of the second residual block contains high level 
features, where the edges of smoke, chimneys and buildings are obvious. 
For the nighttime image, the edges of smoke and buildings in the output 
of the first residual block are not distinguishable due to insufficient light. 
The trajectory of smoke in the output of the second residual block is 
more obvious than that of the first residual block. According to these 
results, we consider that the trajectory of smoke would be important 
information for model training. Besides, the output of the second re
sidual block contains more significant features than that of the first one 
because it combines the output of the previous (first) block. 

4.4. Discussion and limitation 

The VGG model (SVN6H) achieved better results on nighttime images 
than the ResNet models, whereas the ResNet model (SRN10H) achieved 
better results on daytime images than the VGG models (Figs. 3 and 4). 

Fig. 8. Comparison between outputs of different residual blocks based on the daytime (SRN10H) and nighttime (SVN6H) images taken at 2019/03/03 10am and 
2019/10/31 4am, respectively, at the Linyuan air quality monitoring station. 
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Because daytime images (more colorful) contain more useful informa
tion than nighttime images, the ResNet model was further compared 
with another image classification model established by ShuffleNet 
(Zhang et al., 2018) based on daytime images. ShuffleNet has been used 
to tackle image classification problems (Ghosh et al., 2020; Guan, 2019; 
Liu et al., 2020; Miao et al., 2020). Besides, real-time tasks usually aim to 
reach the best accuracy with limited computational budgets. Therefore, 
ShuffleNet that has a lightweight architecture can be implemented to 
cope with real-time tasks for achieving favorable accuracy at a faster 
speed. 

The comparative estimation results between the ResNet (SRN10H) 
and SuffleNet (ShuffleN9H) models based on daytime images with 
respect to PM2.5, PM10 and AQI indicate that ShuffleN9H for PM2.5 per
formed slightly worse than SRN10H while ShuffleN9H for PM10 and AQI 
performed significantly worse than SRN10H. The reason why ShuffleN9H 
performed inferior to SRN10H was that the function of channel shuffle in 
ShuffleN9H failed to efficiently improve either the recognition on the 
edge of the object (smoke) or the ability to learn the difference between 
the current image and the baseline image. 

In this study, ‘real time’ reflects the time that model parameters are 
updated during actual operation. Taking SRN6H as an example, the total 

computation time of the backward propagation phase is 1455 s (=29.1s/ 
epochs*50 epochs), which is significantly larger than that of the feed- 
forward phase (<5 s). Considering the feed-forward operation con
sumes significantly shorter computation time than the backward prop
agation phase, the computation time of the feed-forward phase can be 
ignored. Fig. 9 presents the average computation time per image in the 
backward propagation phase of different image classification models 
constructed with 6 hidden layers (Fig. 9(a)) and with different numbers 
of hidden layers (Fig. 9(b)) in this study. Fig. 9(a) shows that the VGG 
models consumed relatively short computation time, as compared to the 
ResNet models with similar input combinations. It is noted that for VGG 
series, the model with 3 inputs (i.e., current image, baseline image, and 
HSV value) consumed the highest amount of computation time whereas 
the model with 2 inputs (i.e. current image, and HSV value) consumed 
the least amount of computation time. Similar results can be found in the 
ResNet series. Fig. 9(b) indicates that the more the number of layers in 
the SRNH (from 6 to 12) and SVNH (from 4 to 10) models, the longer the 
computation time. Besides, we also notice that the computation time of 
Shuffle9NH was obviously longer than that of SRN10H. It is because the 
structure of a shuffle block is composed of a group convolution unit, a 
channel shuffle unit, and a depth-wise convolution unit, which is more 

Fig. 9. Average computation time (in second) per image in the backward propagation phase of different image classification models. (a) 6 hidden layers. (b) Different 
numbers of hidden layers. 
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complicated than that of ResNet. Therefore the computation time is 
considered another important reason to choose the SRNH model, rather 
than Shuffle9NH, as the best image classification model. 

Experimental results demonstrated that the proposed CNN− RC 
approach could well estimate air quality according to the smoke (size 
and density) and clearness of images and provide reliable and suitable 
measurements (PM2.5, PM10 and AQI). The CNN− RC model exhibited 
short computation time and easy operation. Even though this image- 
based model cannot perfectly reach the estimation made by the expen
sive instruments equipped at monitoring stations, it can play a com
plementary role with the advantage of obtaining timely comprehensive 
air quality estimation. Because the investigative datasets only consisted 
of air quality images at a fixed spot, the proposed model has relatively 
high applicability, reliability, and accuracy for the relevant local area. 
As known, different weather conditions would affect the lightness or 
darkness of air quality images. Thus, our model may not achieve the 
expected accuracy in other regions due to the difference in regional 
climatic and atmospheric conditions. It needs to train and adjust our 
model again using local image data when applying our model in other 
regions. Future research can incorporate these factors to improve model 
accuracy. 

5. Conclusion 

Air pollution imposes serious threats to human health while raising 
intensive public attention in recent decades, yet ambient pollution 
measurements are expensive, and therefore the spatial coverage of air 
quality monitoring stations is limited. An efficient low-cost air quality 
sensing device is of great benefit for human health and air pollution 
control. In this study, we employed the-state-of-the-art computer vision 
techniques for analyzing photos to estimate the haze levels (air pollu
tion), which could serve as an information source complementary to 
official data. We proposed a deep learning approach (CNN− RC) 
hybriding CNN (under ResNet and VGG schemes with several layers 
deep) for image feature extraction and a regression classifier based on 
air quality photos collected at the Linyuan air quality monitoring sta
tion. The CNN− RC models with different input combinations were 
investigated, where the input sources were current images, the baseline 
image, and HSV statistics. The main contributions of the proposed 
CNN− RC approach are three-fold. 

Firstly, the CNN− RC approach can well estimate and classify mul
tiple outputs (PM2.5, PM10, and AQI) at the same time based on multiple 
inputs, i.e., it has a multi-input multi-output (MIMO) framework. The 
test results show that classification accuracy for PM2.5, PM10 and AQI 
based on day-time (night-time) images reached 76% (83%), 84% (84%) 
and 76% (74%), respectively. The results demonstrate that the proposed 
CNN− RC models not only could adequately handle daytime and night
time images to tackle the curse of dimensionality but could also allow 
models to learn and extract useful knowledge from high-dimensional 
datasets more deeply than shallow neural networks. Besides, HSV sta
tistics evidently played an important role in improving the accuracy of 
the proposed CNN− RC approach. 

Secondly, the proposed CNN− RC approach can produce accurate 
estimates on pollutant concentrations for images that are less clear and 
have much smoke. The reason is that CNN considers such photos to be of 
high air pollution because the model’s weights are adjusted by the 
smoke and the clearness of the image. 

Thirdly, an interesting finding is that the CNN− RC approach per
formed better in the nighttime case than in the daytime case. The reason 
could be the colors between an image and the significant feature such as 
smoke. The smoke present in the images appears white, gray, or black in 
general. Daytime photos are colorful and/or have clouds (i.e., noises 
relative to smoke), whereas nighttime images appear to be black-and- 
white. 

We conclude that the proposed CNN− RC approach can rapidly and 
suitably provide air pollution estimation, especially when some air 

quality detectors are malfunctioning or at ungauged areas. In light of 
methodological transferability, future research can extend the CNN− RC 
approach from one single station to multiple stations for producing 
multiple outputs at multiple sites at the same time. Our analytical results 
demonstrate that this image-based approach provides reliable and ac
curate measurements as the ones acquired from expensive instruments, 
while it exhibits short computation time and easy operation, which have 
important implications for how air pollution is measured and managed. 

Credit author statement 

Pu-Yun Kow: Data curation, Formal analysis, Methodology, Soft
ware, Validation, Writing – original draft. I-Wen Hsia: Formal analysis, 
Image processing, Visualization. Li-Chiu Chang: Methodology, Project 
administration, Resources, Supervision. Fi-John Chang: Funding 
acquisition, Methodology, Project administration, Supervision, Writing 
– review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

This study is supported by the Ministry of Science and Technology, 
Taiwan (MOST: 109-2119-M-002-15-A). The datasets provided by the 
Environmental Protection Administration of Taiwan are acknowledged. 
The authors would like to thank the Editors and anonymous Reviewers 
for their constructive comments that greatly contribute to enriching the 
manuscript. 

References 
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Piperac, M.S., et al., 2020. Application of deep learning in aquatic bioassessment: 
towards automated identification of non-biting midges. Sci. Total Environ. 711, 
135160. https://doi.org/10.1016/j.scitotenv.2019.135160. 

Ngoc, D.D., Loisel, H., Jamet, C., Vantrepotte, V., Duforêt-Gaurier, L., Minh, C.D., 
Mangin, A., 2019. Coastal and inland water pixels extraction algorithm (WiPE) from 
spectral shape analysis and HSV transformation applied to Landsat 8 OLI and 
Sentinel-2 MSI. Rem. Sens. Environ. 223, 208–228. https://doi.org/10.1016/j. 
rse.2019.01.024. 

Persello, C., Tolpekin, V.A., Bergado, J.R., de By, R.A., 2019. Delineation of agricultural 
fields in smallholder farms from satellite images using fully convolutional networks 
and combinatorial grouping. Rem. Sens. Environ. 231, 111253. https://doi.org/ 
10.1016/j.rse.2019.111253. 

Pyo, J., Duan, H., Baek, S., Kim, M.S., Jeon, T., Kwon, Y.S., et al., 2019. A convolutional 
neural network regression for quantifying cyanobacteria using hyperspectral 
imagery. Remote Sens. Environ. 233, 111350. https://doi.org/10.1016/j. 
rse.2019.111350. 

Qian, Y., Xing, W., Guan, X., Yang, T., Wu, H., 2020. Coupling Cellular Automata with 
Area Partitioning and Spatiotemporal Convolution for Dynamic Land Use Change 
Simulation. Science of The Total Environment, p. 137738. https://doi.org/10.1016/ 
j.scitotenv.2020.137738. 

Rijal, N., Gutta, R.T., Cao, T., Lin, J., Bo, Q., Zhang, J., 2018. June). Ensemble of deep 
neural networks for estimating particulate matter from images. In: 2018 IEEE 3rd 
International Conference on Image, Vision and Computing (ICIVC). IEEE, 
pp. 733–738. https://doi.org/10.1109/ICIVC.2018.8492790. 

Ruggieri, M., Plaia, A., 2012. An aggregate AQI: comparing different standardizations 
and introducing a variability index. Sci. Total Environ. 420, 263–272. https://doi. 
org/10.1016/j.scitotenv.2011.09.019. 

Soh, P.W., Chang, J.W., Huang, J.W., 2018. Adaptive deep learning-based air quality 
prediction model using the most relevant spatial-temporal relations. Ieee Access 6, 
38186–38199. https://doi.org/10.1109/ACCESS.2018.2849820. 

Sugiyama, T., Ueda, K., Seposo, X.T., Nakashima, A., Kinoshita, M., Matsumoto, H., et al., 
2020. Health effects of PM2. 5 sources on children’s allergic and respiratory 
symptoms in Fukuoka, Japan. Sci. Total Environ. 709, 136023. https://doi.org/ 
10.1016/j.scitotenv.2019.136023. 

Sural, S., Qian, G., Pramanik, S., 2002, September. Segmentation and histogram 
generation using the HSV color space for image retrieval. Proc. Int. Conference 
Image Process. 2 (II-II) https://doi.org/10.1109/ICIP.2002.1040019. IEEE.  

Tsai, S.S., Goggins, W.B., Chiu, H.F., Yang, C.Y., 2003. Evidence for an association 
between air pollution and daily stroke admissions in Kaohsiung, Taiwan. Stroke 34 
(11), 2612–2616. 

Tseng, C.H., Tsuang, B.J., Chiang, C.J., Ku, K.C., Tseng, J.S., Yang, T.Y., et al., 2019. The 
relationship between air pollution and lung cancer in nonsmokers in Taiwan. 
J. Thorac. Oncol. 14 (5), 784–792. 

Vahdatpour, M.S., Sajedi, H., Ramezani, F., 2018. Air pollution forecasting from sky 
images with shallow and deep classifiers. Earth Sci. India 11 (3), 413–422. https:// 
doi.org/10.1007/s12145-018-0334-x. 

Wang, B., Yan, Z., Lu, J., Zhang, G., Li, T., 2018, December. Deep multi-task learning for 
air quality prediction. In: International Conference on Neural Information 
Processing. Springer, Cham, pp. 93–103. https://doi.org/10.1007/978-3-030- 
04221-9_9. 

Wang, L., Guo, S., Huang, W., Qiao, Y., 2015 (08). Places205-vggnet models for scene 
recognition, pp. 1–2 arXiv preprint arXiv:1508.01667v1.  

Wang, N., Zhu, H., Guo, Y., Peng, C., 2018. The heterogeneous effect of democracy, 
political globalization, and urbanization on PM2. 5 concentrations in G20 countries: 
evidence from panel quantile regression. J. Clean. Prod. 194, 54–68. https://doi.org/ 
10.1016/j.jclepro.2018.05.092. 

Wang, Y.S., Chang, L.C., Chang, F.J., 2021. Explore regional PM2. 5 features and 
compositions causing health effects in Taiwan. Environ. Manag. 67 (1), 176–191. 

Wu, Z., Shen, C., Van Den Hengel, A., 2019. Wider or deeper: revisiting the resnet model 
for visual recognition. Pattern Recogn. 90, 119–133. https://doi.org/10.1016/j. 
patcog.2019.01.006. 

Yu, S., Li, H., Li, X., Fu, Y., Liu, F., 2020. Classification of Pathogens by Raman 
Spectroscopy Combined with Generative Adversarial Networks. Science of The Total 
Environment, p. 138477. https://doi.org/10.1016/j.scitotenv.2020.138477. 

Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., et al., 2020. Deep learning in 
environmental remote sensing: achievements and challenges. Remote Sens. Environ. 
241, 111716. https://doi.org/10.1016/j.rse.2020.111716. 

Zhang, C., Yan, J., Li, C., Rui, X., Liu, L., Bie, R., 2016, October. On estimating air 
pollution from photos using convolutional neural network. In: Proceedings of the 
24th ACM International Conference on Multimedia, pp. 297–301. 

Zhang, C., Liu, B., Yan, J., Yan, J., Li, L., Zhang, D., et al., 2017. June). Hybrid 
measurement of air quality as a mobile service: an image based approach. In: 2017 
IEEE International Conference on Web Services (ICWS). IEEE, pp. 853–856. https:// 
doi.org/10.1109/ICWS.2017.105. 

Zhang, Q., Fu, F., Tian, R., 2020. A deep learning and image-based model for air quality 
estimation. Sci. Total Environ. 724, 138178. https://doi.org/10.1016/j. 
scitotenv.2020.138178. 

Zhang, X., Zhou, X., Lin, M., Sun, J., 2018. Shufflenet: an extremely efficient 
convolutional neural network for mobile devices. In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, pp. 6848–6856. 

Zhang, Y., Shuai, C., Bian, J., Chen, X., Wu, Y., Shen, L., 2019. Socioeconomic factors of 
PM2. 5 concentrations in 152 Chinese cities: decomposition analysis using LMDI. 
J. Clean. Prod. 218, 96–107. https://doi.org/10.1016/j.jclepro.2019.01.322. 

Zhao, K., He, T., Wu, S., Wang, S., Dai, B., Yang, Q., Lei, Y., 2019. Research on video 
classification method of key pollution sources based on deep learning. J. Vis. 
Commun. Image Represent. 59, 283–291. 

Zhong, L., Hu, L., Zhou, H., 2019. Deep learning based multi-temporal crop classification. 
Rem. Sens. Environ. 221, 430–443. https://doi.org/10.1016/j.rse.2018.11.032. 

Zhou, Y., Chang, F.J., Chang, L.C., Kao, I.F., Wang, Y.S., 2019. Explore a deep learning 
multi-output neural network for regional multi-step-ahead air quality forecasts. 
J. Clean. Prod. 209, 134–145. 

Zhou, Y., Chang, L.C., Chang, F.J., 2020. Explore a Multivariate Bayesian Uncertainty 
Processor driven by artificial neural networks for probabilistic PM2. 5 forecasting. 
Sci. Total Environ. 711, 134792. 

Zhou, L., Chen, X., Tian, X., 2018. The impact of fine particulate matter (PM2. 5) on 
China’s agricultural production from 2001 to 2010. J. Clean. Prod. 178, 133–141. 
https://doi.org/10.1016/j.jclepro.2017.12.204. 

P.-Y. Kow et al.                                                                                                                                                                                                                                 

https://doi.org/10.1117/12.2309486
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CAC.2018.8623238
https://doi.org/10.1109/CAC.2018.8623238
https://doi.org/10.1016/j.rse.2018.12.021
https://doi.org/10.1016/j.rse.2018.12.021
https://doi.org/10.1016/j.scitotenv.2019.134213
https://doi.org/10.1016/j.jclepro.2020.121285
https://doi.org/10.1016/j.jclepro.2020.121285
https://doi.org/10.1016/j.scitotenv.2011.08.069
https://doi.org/10.1016/j.scitotenv.2020.137432
https://doi.org/10.1016/j.rse.2019.111563
https://doi.org/10.1145/2808492.2808564
https://doi.org/10.1145/2808492.2808564
https://doi.org/10.1371/journal.pone.0145955
https://doi.org/10.1371/journal.pone.0145955
https://doi.org/10.3390/a13110301
https://doi.org/10.3390/a13110301
https://doi.org/10.1109/ICPR.2018.8546004
https://doi.org/10.1109/ICPR.2018.8546004
https://doi.org/10.1109/ICCCS49078.2020.9118411
https://doi.org/10.1109/ICCCS49078.2020.9118411
https://doi.org/10.1016/j.scitotenv.2019.135160
https://doi.org/10.1016/j.rse.2019.01.024
https://doi.org/10.1016/j.rse.2019.01.024
https://doi.org/10.1016/j.rse.2019.111253
https://doi.org/10.1016/j.rse.2019.111253
https://doi.org/10.1016/j.rse.2019.111350
https://doi.org/10.1016/j.rse.2019.111350
https://doi.org/10.1016/j.scitotenv.2020.137738
https://doi.org/10.1016/j.scitotenv.2020.137738
https://doi.org/10.1109/ICIVC.2018.8492790
https://doi.org/10.1016/j.scitotenv.2011.09.019
https://doi.org/10.1016/j.scitotenv.2011.09.019
https://doi.org/10.1109/ACCESS.2018.2849820
https://doi.org/10.1016/j.scitotenv.2019.136023
https://doi.org/10.1016/j.scitotenv.2019.136023
https://doi.org/10.1109/ICIP.2002.1040019
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref37
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref37
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref37
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref38
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref38
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref38
https://doi.org/10.1007/s12145-018-0334-x
https://doi.org/10.1007/s12145-018-0334-x
https://doi.org/10.1007/978-3-030-04221-9_9
https://doi.org/10.1007/978-3-030-04221-9_9
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref41
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref41
https://doi.org/10.1016/j.jclepro.2018.05.092
https://doi.org/10.1016/j.jclepro.2018.05.092
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref43
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref43
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1016/j.patcog.2019.01.006
https://doi.org/10.1016/j.scitotenv.2020.138477
https://doi.org/10.1016/j.rse.2020.111716
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref47
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref47
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref47
https://doi.org/10.1109/ICWS.2017.105
https://doi.org/10.1109/ICWS.2017.105
https://doi.org/10.1016/j.scitotenv.2020.138178
https://doi.org/10.1016/j.scitotenv.2020.138178
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref50
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref50
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref50
https://doi.org/10.1016/j.jclepro.2019.01.322
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref52
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref52
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref52
https://doi.org/10.1016/j.rse.2018.11.032
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref54
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref54
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref54
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref55
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref55
http://refhub.elsevier.com/S0301-4797(22)00133-5/sref55
https://doi.org/10.1016/j.jclepro.2017.12.204

	Real-time image-based air quality estimation by deep learning neural networks
	1 Introduction
	2 Study area and materials
	2.1 Study area
	2.2 Data collection and statistical analysis

	3 Methodology
	3.1 Problems and motivations
	3.2 Convolutional neural network (CNN)
	3.3 Fully connected layer and regression classifier
	3.4 Hybrid of CNN and regression classifier
	3.4.1 Hue, saturation and value (HSV)
	3.4.2 RNH (ResNet-HSV) scheme
	3.4.3 VNH (VGG-HSV) scheme

	3.5 Evaluation indicators

	4 Results and discussion
	4.1 Data preprocessing
	4.2 Model parameter setting
	4.3 Comparison of different CNN−RC architectures for image-based air quality regression classification
	4.3.1 Model selection
	4.3.2 Determination of the optimal number of building blocks
	4.3.3 Classification performance
	4.3.4 Discussion on air quality images
	4.3.5 Discussion on extracted features from images

	4.4 Discussion and limitation

	5 Conclusion
	Credit author statement
	Declaration of competing interest
	Acknowledgement
	References


