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a b s t r a c t

Timely regional air quality forecasting in a city is crucial and beneficial for supporting environmental
management decisions as well as averting serious accidents caused by air pollution. Artificial
Intelligence-based models have been widely used in air quality forecasting. The Shallow Multi-output
Long Short-Term Memory (SM-LSTM) model is suitable for regional multi-step-ahead air quality fore-
casting, while it commonly encounters spatio-temporal instabilities and time-lag effects. To overcome
these bottlenecks and overfitting issues, this study proposed a Deep Multi-output LSTM (DM-LSTM)
neural network model that were incorporated with three deep learning algorithms (i.e., mini-batch
gradient descent, dropout neuron and L2 regularization) to configure the model for extracting the key
factors of complex spatio-temporal relations as well as reducing error accumulation and propagation in
multi-step-ahead air quality forecasting. The proposed DM-LSTM model was evaluated by three time
series of PM2.5, PM10, and NOx simultaneously at five air quality monitoring stations in Taipei City of
Taiwan. Results indicated that the loss function values (mean-square-error) of the SM-LSTM and DM-
LSTM models in the testing stages at horizon tþ4 were 0.87 and 0.72, respectively. The Gbench values
of the DM-LSTM model in the testing stages for PM2.5, PM10, and NOx reached 0.95 at horizon tþ1 and
exceeded 0.81 at horizon tþ4, respectively. Results demonstrated that the proposed DM-LSTM model
incorporated with three deep learning algorithms could significantly improve the spatio-temporal sta-
bility and accuracy of regional multi-step-ahead air quality forecasts.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Exposure to ambient air pollution is a primary environmental
risk factor in relation to adverse health impacts (Apte et al., 2015;
Liu et al., 2017). Fine particulate matter (PM2.5 and PM10, i.e., par-
ticles smaller than 2.5 or 10 mm) and nitrogen oxide (NOx) are the
dominant components of ambient air pollution associated with
booming urban development (Li et al., 2017, 2018; Lin and Zhu,
2018). To date, epidemiological investigations and studies demon-
strated that some air pollution-related diseases were associated
with exposure to PM2.5, PM10, and NOx (Reggente et al., 2014; Wang
et al., 2016; Wu et al., 2018a,b). In addition, these air pollutants
were acknowledged as typical representatives of particle number
concentration in urban air quality (Li et al., 2018a,b; Wu et al.,
2018a,b). Real-time air quality information is of great importance
to air pollution control and human health protection from air
pollution (Ni et al., 2017). To support environmental management
decisions and avert serious accidents caused by air pollution, air
quality forecasting is becomingmore andmore essential not only to
better govern the trend of air pollution variation but to provide
timely and comprehensive environmental quality information
(Pournazeri et al., 2014; Yang and Christakos, 2015; Corani and
Scanagatta, 2016; Lauret et al., 2016; Wakeel et al., 2017; Van
et al., 2018; Yang et al., 2018).

A wide variety of methods have been used to forecast or predict
regional air quality. These studies primarily branched out into two
major classes: physical-based and data-driven methods. Physical-
based models like dispersion and chemical transport models have
still been under development as a result of uncertainties in relation
to source inventories and the chemical and dynamical mechanisms
of aerosols in atmosphere (Afzali et al., 2017; Vijayaraghavan et al.,
2016; Jiang et al., 2018; Karambelas et al., 2018; Pisoni et al., 2018).
Data-driven models have leant upon the empirical or statistical
relationship between air quality observations and other affecting
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factors (Ausati and Amanollahi, 2016; Gong and Ordieres, 2016; Gao
et al., 2018). Among data-driven models, artificial neural networks
(ANNs), a crucial branch of Artificial Intelligence (AI), have been
utilized frequently to predict environmental parameters, especially
for water and air quality (e.g., Feng et al., 2015; Chang et al., 2015,
2016; Taghavifar et al., 2016; Taylan, 2017; Nieto et al., 2017). For
instance, the backpropagation neural networks (BPNN), the radial
basis function (RBF), the Elman recurrent neural network, the non-
linear autoregressive with exogenous inputs neural network
(NARX), the adaptive-network-based fuzzy inference system
(ANFIS) and the support vector machine (SVM) have been widely
applied to modelling air quality (Voukantsis et al., 2011; Reisen
et al., 2014; Prasad et al., 2016; Yeganeh et al., 2018; Nieto et al.,
2018). Nevertheless, these models usually encounter a common
drawback of under-predicting particulate matter concentrations
under the conditions of very high concentrations that would
impose the most adverse effects on human health. Therefore, more
prior knowledge and sophisticated modelling techniques are
needed to capture the abrupt changes in particulate matter con-
centrations. It was noticed that the abovementioned methods were
usually adopted to construct site-specific data-driven models for
individual air quality monitoring station, in disregard of the po-
tential nonlinear spatial correlation among air quality monitoring
stations. Bearing this in mind as a motivation, multi-output data-
driven models adopted in forecasting would generally be the
instance that the underlying nonlinear correlation among output
variables could be extracted to improve forecast accuracy (Nguyen
et al., 2012; Li et al., 2016). The demand for multi-step-ahead and
multi-output air quality forecasting increased modelling difficulty
when traditional shallow neural network models were imple-
mented. Recently, the Long Short-Term Memory (LSTM) neural
network, serving as an advanced component of deep learning
neural networks, has been applied with success to image classifi-
cation, natural language processing, Internet of Things (IoT), ma-
chine translation, and prediction. (Krizhevsky et al., 2012;
Ballesteros et al., 2017; Greff et al., 2017; Zhang et al., 2018a,b).
Wei et al. (2017) used the convolution-LSTM-based deep neural
network to analyze and predict spatiotemporal data and promote
text transfer learning research. Hinton et al. (2006, 2012) utilized
deep learning neural networks configured with network architec-
tures of multiple hidden layers to capture the inherent features of
data layer-by-layer without prior knowledge, which produced good
performance in time series forecasting. Therefore, it is imperative
to conduct in-depth research on the multi-output data-driven
models constructed over deep learning neural networks for
improving forecast reliability and accuracy through tackling the
complexity and challenges encountered in regional multi-step-
ahead air quality forecasting.

This study was explored with two primary foci: (1) developing a
deep learning-based multi-output LSTM neural network (DM-
LSTM) model to make regional multi-ahead-step forecasts at mul-
tiple outputs simultaneously; and (2) integrating three deep
learning algorithms to train the DM-LSTM model for overcoming
the bottlenecks of instability and overfitting. The proposed DM-
LSTM model with h (�2) hidden layers was trained by a composi-
tion of three deep learning algorithms for extracting the complex
spatio-temporal patterns among meteorological inputs, air quality
inputs and multiple air quality outputs at different air quality
monitoring stations. The reliability and accuracy of the proposed
model were assessed by a study case of the regional multi-ahead-
step air quality (PM2.5, PM10, and NOx) forecasts in Taipei City of
Taiwan.
2. Methodology

This paper proposed a deep learning-based multi-output LSTM
neural network model (DM-LSTM) for improving the multi-step-
ahead forecast accuracy of multiple outputs, where the model
was trained by a composition of three deep learning algorithms
with weight adjustment. Fig. 1 illustrated the architectures of the
original LSTM unit (Fig. 1 (a)), the Shallow Multi-output LSTM
neural network (SM-LSTM)model with one hidden layer (Fig.1 (b)),
and the proposed Deep Multi-output LSTM neural network (DM-
LSTM) model with h (�2) hidden layers (Fig. 1 (c)). The SM-LSTM
model served as a benchmark in this study. The methods used in
this study were briefly introduced as follows.
2.1. Long Short-Term Memory (LSTM) model

As one of the popular recurrent neural networks, the LSTM
neural networkwith the internal self-looped cell was first proposed
by Hochreiter and Schmidhuber (1997), which promoted the ability
to memorize the long (static) term and short (recurrent) term dy-
namic characteristics of time series (Hochreiter, 1998). The
description of the LSTM unit was given in Appendix A.

The SM-LSTM model was introduced as follows.
Fig. 1. Architectures of Multi-output Long Short-Term Memory neural network models
(M-LSTM). a. LSTM unit. b. Shallow learning-based M-LSTM model with one hidden
layer (SM-LSTM). c. Deep learning-based M-LSTM model with h hidden layers (DM-
LSTM).
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where Xt and Yt are the observed exogenous and autoregressive
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hidden layer. TðH1Þ is the transform function of the hidden layer.
The DM-LSTM model was described as follows.
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where H1, H2, …, Hh are the 1st, 2nd, …, hth hidden layers in the
DM-LSTMmodel. Under the preconditionwith the same number of
input variables ðNinÞ, the number of neurons ðmÞ in every hidden
layer and output variables ðNoutÞ, the total number of parameters in
the SM-LSTM model with one hidden layer equals to the sum of
ðNin �mþm� NoutÞ weight parameters and ðmþ NoutÞ bias pa-
rameters, while the total number of parameters in the DM-LSTM
model with h hidden layers equals to the sum of
ðNin �mþ ðh� 1Þ �m2 þm� NoutÞ weight parameters and
ðh�mþ NoutÞ bias parameters, respectively. In other words, the
DM-LSTM model would have extra ððh� 1Þ �m2 þ ðh� 1Þ �mÞ
parameters owing to h hidden layers.

The comparison between SM-LSTM and DM-LSTM models
constructed in this study was summarized as: (1) to extract the
inherent features of data from the lowest to the highest levels layer-
by-layer, the former used a shallow neural network (SNN) with one
hidden layer while the latter used a deep neural network (DNN)
with h (�2) hidden layers; and (2) on account of h hidden layers,
the latter had more parameters ði:e:ðh� 1Þ �m2 þ ðh� 1Þ �mÞ
than the former did. In addition, the stochastic gradient descent
algorithm (SGD) was commonly used to optimize the parameters of
a multi-output LSTMmodel with one hidden layer (Nakama, 2009).
The SGD applied to DM-LSTM models with more than one hidden
layer usually encountered bottlenecks of instability and overfitting
(Hinton et al., 2012). In other words, DM-LSTM models would de-
mand for more auxiliary deep learning techniques to increase
model stability and mitigate overfitting.
2.2. Deep learning algorithms

DNNs are considered suitable for modelling the non-linear
spatio-temporal pattern upon time series, while it is easy for
them to trigger overfitting problems if the number of network
parameters is large (Hinton et al., 2012). To mitigate overfitting and
increase stability, three deep learning algorithms, i.e., mini-batch
gradient decent (MBGD) algorithm, dropout neuron algorithm,
and L2 regularization algorithm, were integrated to train the DM-
LSTM model in this study. To be more precise, the advantages of
the proposed method lay in two folds: the use of the MBGD algo-
rithm aimed at mitigating model instability while the use of the
dropout neuron and L2 regularization algorithms aimed at the
avoidance of overfitting. The three deep learning algorithms were
briefly described as below.
2.2.1. MBGD algorithm
The full batch gradient descent algorithm using all training

datasets in each iteration and the SGD algorithm using one training
dataset in each iteration are common practice for training SNN
models (Rumelhart et al., 1985). The former benefits from better
convergence but suffers from slower computation speed due to the
need to observe the whole training datasets in every iteration. The
latter benefits from faster computation speed but suffers from
inferior convergence. To overcome the drawbacks of the SGD and
the full batch gradient decent algorithms, the MBGD algorithm
takes the advantages of both algorithms and performs an update on
parameters for every mini-batch of training datasets (Nakama,
2009), which reduces the variance of the updates on parameters
and would usually produce more stable convergence (Qian et al.,
2015). Therefore, the MBGD algorithm was applied to optimizing
the parameters of the DM-LSTM model in this study.

2.2.2. Dropout neuron algorithm
The dropout algorithm randomly discards some neurons with

probability p in the hidden layer when training a neural network for
preventing the co-adaptation of neurons (Baldi and Sadowski,
2014). From the perspective of the reduction in model structure
complexity, the dropout neuron algorithm is also considered as an
effective method to handle the overfitting problems of DNNmodels
(Hinton et al., 2012; Srivastava et al., 2014). Through dropping out
neurons, the parameters of the DM-LSTM model proposed in this
study were updated by a backpropagation algorithm such that the
connections of the survived neurons became more stable. In other
words, only the survived neurons were trained at every iteration.
Hence, the dropout neuron algorithm could transform a fully-
connected hidden layer into a partially-connected one for pre-
venting the DNN model from depending overmuch on determin-
istic neurons in the hidden layers and consequently could mitigate
the co-adaptability of neurons (Zhang et al., 2018a,b).

2.2.3. L2 regularization algorithm
The L2 regularization algorithm is usually adopted to optimize

the weight parameters of data-driven models for avoiding over-
fitting (Chang et al., 2010; Kab�an, 2013; Bilgic et al., 2014; Nielsen,
2015; Wang and Cao, 2017). As a penalty, the L2 regularization al-
gorithm adds the sum of the absolute values of weight parameters
to the loss function (or the objective function) through gradient
descent calculation. The mean-square-error (MSE) is commonly
used as the loss function ðL0Þ in the gradient descent calculation.
The MSE was described as follows.

L0 ¼ MSE ¼ 1
N

XN
t¼1

�
YðtÞ � bYðtÞ�2

(3)

where YðtÞ and bYðtÞ are the matrixes of observed and forecasted
multi-output variables at the tth time, respectively. N is the number
of time steps. From the perspective of updated weight parameters,
the MSE with L2 regularization (Fig. 2 (c)) was used as the loss
function ðLÞ in the gradient descent calculation in this study,
described as follows.
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l
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where L is the loss functionwith L2 regularization. l
2N

PN
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2
i is the

L2 regularization for weight parameters. l is the coefficient of L2
regularization, and l>0. u is the matrix of weight parameters.

The partial derivative of the loss function L to u was described



Fig. 2. Flow diagram of the DM-LSTM trained by a composition of: a. Mini-Batch
Gradient Decent algorithm (MBGD); b. Dropout neuron algorithm (LSTM units
colored in white are dropped out randomly); and c. L2 regularization algorithm.

Y. Zhou et al. / Journal of Cleaner Production 209 (2019) 134e145 137
below
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Thus, in each gradient computation, the weight parameter
matrix u could be updated by the following equations.
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where a is the learning rate in gradient descent calculation, and
a>0. Accounting for the positive parameters a, l and N, the values
in the weight parameter matrix u tend to decrease in the iteration
process.

In brief, the MBGD algorithm has the capability for overcoming
the instability problem of DNN models, while the dropout neuron
and L2 regularization algorithms have the ability for coping with
the overfitting problems of DNN models at the same time. The
following section described how to integrate the three deep
learning algorithms for training the DM-LSTM model.
2.3. Training process of the LSTM model

In this study, the training process of the DM-LSTM model was
executed with the MBGD, the dropout neuron, and the L2 regula-
rization algorithms. Fig. 2 showed the flow diagram of the DM-
LSTM model training process. The implementation procedure was
described as follows.

Step 1: Divide datasets into training and testing datasets.
Initialize the parameters of the LSTM. Set the maximal epoch,
the number of hidden layers and the number of neurons.
Step 2: Identify a mini-batch of data based on training datasets
through the trial-and-error procedure (Fig. 2(a)). The mini-
batch size usually ranges between 32 (¼ 25) and 1024 (¼210),
which needs to be adjusted application by application for
making sure the mini-batch size is suitable for the Central
Processing Unit (CPU) or Graphic Processing Unit (GPU)memory
(Nakama, 2009). Hence, the values of the batch size in this study
were set as 25 (minimal value), 26, 27 and 28 (maximal value),
respectively.
Step 3: Implement the routines of the dropout neuron and L2
regularization algorithms:

(3a) Check whether an epoch is completed. If an epoch is not
completed, the number of neurons in the hidden layer is
adjusted with the dropout probability p (Fig. 2 (b)).
(3b) Compute the loos function in terms of MSE with the L2
regularization algorithm (Eq. (10), Fig. 2(c)). Then, execute the
gradient descent calculation, update weights and bias, and uti-
lize the next mini-batch to repeat Step 3. If an epoch is
completed, proceed to the next step.

Step 4: Terminate the computation process subject to the
stopping criteria (early stopping or the maximal epoch Emax). If
the value of the loss function does not decrease over 100
consecutive epochs, forecast accuracy can no longer be
enhanced, which triggers the computation to stop. If the
maximal number of epochs is reached, the training process
stops. Otherwise, update the epoch, and repeat Steps 2 and 3.
Output: Save the optimized parameters of the DM-LSTMmodel,
including the maximal epoch (Emax), the number of neurons, the
learning rate ðaÞ, the mini-batch size, the dropout probability
(p), the coefficient ðlÞ of L2 regularization, theweight vector and
the bias vector.

3. Study area and materials

With the fast-growing economy and population, air quality
deterioration in Taiwan has become highly problematic in recent
years. Taipei City with an area of 272 km2 serves as the center of
politics, commerce, and culture in Taiwan. The population of the
city reached 2.69 million in 2016. People across Taipei City nowa-
days undergo a great possibility of exposure to high-level invasion
of air pollutants (e.g., PM2.5, PM10, and NOx). Therefore, healthy and
green urban development demands for accurate multi-step-ahead
forecasts of PM2.5, PM10 and NOx concentrations such that
regional air quality can be handled and controlled adequately.

Fig. 3 illustrated the locations of Taipei City, five air quality
monitoring stations and sixteen meteorological monitoring sta-
tions in the study area. Regarding the air quality monitoring sta-
tions, Stations A1 (Yong-He) and A2 (San-Chong) are traffic stations
(i.e., stations located in areas of heavy traffic), Stations A3 (Song-
Shan) and A4 (Shi-Lin) are general stations, and Station A5 (Yang-
Ming) is a park station (i.e., a station located in a park). This study
employed hourly data of eight air quality factors (PM2.5, PM10, O3,
NOx, NO2, NO, SO2, CO) and five meteorological factors (rainfall,
temperature, wind speed, wind direction, and relative humidity)
collected from 2010 to 2016 (7 years) in the study area. In this study,
air quality data were extracted from the Environmental Protection
Administration in Taiwan (https://taqm.epa.gov.tw/taqm/tw/
default.aspx in Chinese), and meteorological data were extracted
from the Central Weather Bureau in Taiwan (https://e-service.cwb.
gov.tw/HistoryDataQuery/index.jsp in Chinese). A total of 61,368
(¼[(2 � 366)þ(5 � 365)] � 24) hourly datasets were used in this
study, where 35,064 data (4 years) were used for model training
while the remaining 26,304 data (3 years) were used for model
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Fig. 3. Distribution of air quality and meteorological monitoring stations in Taipei City. Stations A1 (Yong-He) and A2 (San-Chong) are traffic stations (i.e. stations located in areas of
heavy traffic). Stations A3 (Song-Shan) and A4 (Shi-Lin) are general stations. Station A5 (Yang-Ming) is a park station (i.e. a station located in a park).
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testing. The Kendall tau coefficient (Maidment, 1993) was adopted
to identify the highest correlation concerning time lags between
input variables (meteorological and air quality factors) and output
variables (PM2.5, PM10, and NOx).

To reduce the negative effect of the different scales of input data
on model's learning ability, all thirteen input variables were stan-
dardized to the same scale. For obtaining stable convergence in the
developed model, the normal standardization was applied to data
pre-processing. The standardization formula was defined as
follows.

X*ðtÞ ¼ XðtÞ � X
s

(7)

where X*ðtÞ is the normal standardization for input data in the tth
time. X and s are the average and standard deviation of input data,
respectively. The root-mean-square-error (RMSE) and the
goodness-of-fit with respect to the benchmark (Gbench) were car-
ried out for comparison. The RMSE and Gbench were defined as
follows.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1
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�2

vuut ; RMSE � 0 (8)
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XT
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ðYðtÞ�YbenchðtÞÞ2

1
CCCA�100%; Gbench�100%

(9)

where bYðtÞ and YðtÞ is the forecasted and observed values of the
output variable at the tth time, respectively. YbenchðtÞ is the
observed data shifted backwards by one or more time lags, e.g., for
the nth-step-ahead forecast, YbenchðtÞ ¼ Y ðt� nÞ.

Table 1 presented the statistic indexes of PM2.5, PM10 and NOx
concentrations at five air quality monitoring stations in different
seasons. It was noticed that the statistic indexes of the maximum,
average and standard derivation at traffic stations (A1 and A2) were
the largest, while those in the park station (A5) were the lowest.
Such phenomena could be a result of the site-specific primary
sources of particulate matters. For instance, vehicle exhaust emis-
sion would be the primary source of particulate matter and nitro-
gen oxide at traffic stations; air pollutant emission from residential
and commercial activities would be the primary source of partic-
ulate matter and nitrogen oxide at general stations; and atmo-
spheric transport would be the primary trigger of particulate
matter and nitrogen oxide at the park station because human ac-
tivities would be less here. In other words, the driving force of air
pollutants fromvehicle transportationwas stronger than that of the
other human activities in Taipei City.

According to the highest values of the Kendall tau coefficients,
the time lags of input variables were set as 1 h up to 4 h for five
meteorological factors (rainfall, temperature, wind speed, wind
direction and relative humidity) and eight air quality factors (PM2.5,
PM10, O3, NOx, NO2, NO, SO2, CO). The SM-LSTM and DM-LSTM
models were constructed for making regional multi-step-ahead
(horizons t þ 1 up to tþ4) air quality forecasts in Taipei City. The
performance of these models was presented in terms of RMSE and
Gbench.

4. Results and discussion

This study intended to explore and assess the predictability of
the LSTM coupled with various deep learning algorithms on mul-
tiple outputs at different horizons for promoting the reliability and
accuracy of regional air quality forecasts. The results and findings
were presented and discussed in details in the order of model
assessment, spatial stability of the models, temporal stability of the
models, and summarization, shown as follows.

4.1. Performance of LSTM models for air quality forecasts in Taipei
City

In this study, the number of input variables was 580 (Nin ¼ (8



Table 1
Statistic indexes of observed PM2.5, PM10 and NOx concentrations at five air quality monitoring stations in Taipei City.

Season Statistic index Air Quality Monitoring Stations

A1 A2 A3 A4 A5

PM2.5
a PM10 NOx PM2.5 PM10 NOx PM2.5 PM10 NOx PM2.5 PM10 NOx PM2.5 PM10 NOx

Spring Maximum 377 457 325 358 401 287 259 350 216 278 366 237 147 183 113
Mean 25 35 21 27 38 17 21 24 18 18 23 16 13 16 11
Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation 18 24 19 16 19 17 13 15 11 12 15 11 8 12 9

Summer Maximum 226 283 188 215 257 182 155 204 137 167 212 153 88 117 71
Mean 15 20 11 16 19 12 13 15 9 11 14 10 8 11 6
Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation 11 14 11 10 13 11 8 10 8 7 11 6 5 8 4

Autumn Maximum 264 318 210 251 306 185 181 224 157 195 237 170 103 128 84
Mean 18 23 15 19 21 13 15 18 11 13 20 15 9 11 7
Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation 13 15 10 11 16 10 9 13 8 8 14 9 6 9 8

Winter Maximum 358 407 309 340 395 291 246 315 224 264 307 201 140 179 131
Mean 24 30 22 26 27 23 20 24 18 17 25 14 12 17 10
Minimum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Standard Deviation 17 21 14 15 18 12 12 16 13 11 14 9 8 14 11

a Units of PM2.5, PM10 and NOx concentrations are mg/m3, mg/m3, ppb, respectively.
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(air quality factors)þ5 (meteorological factors))ⅹ5 (air quality
monitoring stations)ⅹ4 (time-lags)þ5 (meteorological factors)ⅹ16
(meteorological monitoring stations)ⅹ4 (time-lags)) while the
number of output variables was 15 (¼ Nout ¼ 5 (air quality moni-
toring stations)ⅹ3 (air quality indexes, i.e. PM2.5, PM10 and NOx)). It
was noted that these massive input variables were used for model
construction in order to explore the suitability and effectiveness of
the proposed DM-LSTM model incorporated with three learning
algorithms (i.e., mini-batch gradient decent (MBGD) algorithm,
dropout neuron algorithm and L2 regularization algorithm). The
optimal numbers of hidden layers and neurons usually depend on
the amount of datasets and system complexity. Through trial and
error procedures, it is very likely to cause overfitting if the number
of parameters exceeds 50% of training datasets while it is easy to
reduce model generalizability if the number of parameters is less
than 10% of training datasets. Taking the horizon tþ4 for example,
Table 2 presented the optimal parameters of the four LSTM models
Table 2
Parameters of the four LSTM models at horizon tþ4.

Model Parameters

Emax Neurons Hidden layer Learning rate a

SM-LSTM a 500 10 1 0.0005
20
30
40

DM-LSTM1 b 500 20 2 0.0005
3

DM-LSTM2 c 500 20 2 0.0005

DM-LSTM3 d 500 20 2 0.0005

A value in bold denotes the optimal value of each parameter corresponding to the minim
training stages of each model.

a SM-LSTM denotes the Shallow Multi-output LSTM neural network with only 1 hidden
algorithm (SGD).

b DM-LSTM1 denotes the Deep Multi-output LSTM neural network with 2 or 3 hidden
c DM-LSTM2 denotes the Deep Multi-output LSTM neural network with 2 hidden lay

algorithm (MBGD).
d DM-LSTM3 denotes the Deep Multi-output LSTM neural network with 2 hidden laye

dropout neuron algorithm and L2 regularization algorithm.
e N is the number of training dataset, where the GD algorithm is used to optimize mo
f For identifying the mini-batch size, the MBGD is used to optimize model parameter
investigated in this study. It was noticed that: (1) the difference
between SM-LSTM and DM-LSTM1models was that the former was
an SNNwith only one hidden layer while the latter was a DNNwith
two or three hidden layers; (2) the difference between DM-LSTM1
and DM-LSTM2 models was that the learning algorithms adopted
in the former and latter were the SGD and the MBGD, respectively;
and (3) the difference between DM-LSTM2 and DM-LSTM3 models
was that the latter used dropout neuron and L2 regularization al-
gorithms while the former did not. The results shown in Table 2
indicated that: (1) the optimal number of neurons was 20 occur-
ring at the minimal MSE value of 0.87 for the SM-LSTM model,
while the optimal number of hidden layers was 2 occurring at the
minimal MSE value of 0.81 for the DM-LSTM1 model; (2) the
numbers of hidden layers were 1 and 2 for SM-LSTM and DM-
LSTM1 models with their optimal parameters, respectively; and
(3) the optimal mini-batch size of training datasets was 128 (¼27)
for the DM-LSTM2 model. It was noted that the comparison
MSE

Batch size Dropout probability p Coefficient l

N e¼ 35,064 / / 1.13
0.87
1.19
1.36

N¼ 35,064 / / 0.81
1.63

25 f / / 1.15
26 1.08
27 0.75
28 1.11
27 0.50 0.005 0.72

al value of Mean Square Error (MSE, is calculated with the normalized dataset) in

layer, where the parameters are optimized by using the stochastic gradient decent

layers, where the parameters are also optimized by using the SGD algorithm.
ers, where the parameters are optimized by using the mini-batch gradient decent

rs, where the parameters are optimized by the integration of the MBGD algorithm,

del parameters.
s.



Fig. 4. Mean Squared Error (MSE) values of LSTMmodels in training and testing stages
at horizon tþ4 (the value of MSE is calculated with the normalized dataset).
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analysis made between SM-LSTM and DM-LSTM1 models was to
illustrate the difference in model performance between shallow
and deep neural network models, while the comparison analysis
made among three DM-LSTM models was to illustrate the contri-
bution of various deep learning algorithms to overcoming the
bottlenecks of instability and overfitting that occurred in regional
multi-step-ahead air quality (PM2.5, PM10, and NOx) forecasting.
Besides, the dropout neuron algorithm with probability p (¼0.5, in
our case) could randomly delete some neurons from the hidden
layer and reduce the number of model parameters during training
for the avoidance of overfitting. As soon as the search process of the
deep learning algorithm(s) obtained a set of the optimal weights in
an iteration, the optimal number of hidden layers and the optimal
number of hidden units (neurons) in each layer would be stored
automatically while the hidden units together with their corre-
sponding weights stored in the previous iteration would be
removed then. In this study, the dropout neuron and the L2 regu-
larization algorithms were responsible for optimizing the number
of hidden units in each layer, while the MBGD algorithm was
responsible for optimizing the number of hidden layers (Table 2).
Additionally, the SGD algorithm failed to automatically determine
the numbers of hidden layers and hidden units, and therefore
would induce redundant hidden units. Moreover, the search pro-
cess of the SGD algorithm was very time consuming because only
one training dataset was used in each iteration. Therefore, the
hybrid of the three deep learning algorithms (the MBGD, the
dropout neuron, and the L2 regularization algorithms) would play a
pivotal role in the automatic determination of a proper network
size for DNN.

To show the merits of the proposed DM-LSTM models, an
assessment was conducted on the results obtained from the
training and testing stages of the four models at horizon tþ4
regarding air quality (PM2.5, PM10, and NOx) forecasts in Taipei City
(Fig. 4). The comparison between SM-LSTM and DM-LSTM1models
showed that the final loss function value (0.81) of the DM-LSTM1
model was smaller than that (0.87) of the SM-LSTM model in the
training stages while the final loss function value (1.14) of the DM-
LSTM1 model was larger than that (0.98) of the SM-LSTMmodel in
the testing stage. It indicated that overfitting occurred in the DM-
LSTM1 model if the performance was good in the training stage
but decreased significantly in the testing stage. In addition, the loss
function values of the SM-LSTM model in both stages showed less
fluctuation than those of the DM-LSTM1 model, which implied the
DM-LSTM1model would easily trigger forecast instability problem.
The reason was that instability and overfitting bottlenecks would
be easily induced by DNNs, for instance, the number of model pa-
rameters and model complexity increased as the number of hidden
layers increased for the DM-LSTM1 model. The analyzed results
indicated that the DNN model (i.e., DM-LSTM1) required more
auxiliary deep learning techniques to handle its instability and
overfitting problems. Next, the comparison between DM-LSTM1
and DM-LSTM2 models showed that the loss function values of
the DM-LSTM2 model fluctuated less and were smaller, which
implied the DM-LSTM2 model would overcome the forecast
instability owing to the utilization of the MBGD algorithm in the
training stage. Then, the comparison between DM-LSTM2 and DM-
LSTM3 models indicated that the difference (0.09¼ 0.81e0.72) of
the final loss function values between the training and testing
stages of the DM-LSTM3 model was significantly smaller than that
(0.17¼ 0.92e0.75) of the DM-LSTM2 model. It demonstrated that
the DM-LSTM3 model overcame the overfitting bottleneck occur-
ring in the deep learning neural network because of the utilization
of the dropout neuron and L2 regularization algorithms during the
training stage.

These comparative results demonstrated that the proposed DM-
LSTM3 model with three deep learning algorithms not only pro-
duced the smallest loss function values as well as the most stable
loss function curve but also effectively overcame the instability and
overfitting shortcomings for regional multi-step-ahead air quality
forecasting. Such achievement made by the DM-LSTM3 model
could be owing to the reasons that the dropout neuron and L2
regularization algorithms improved forecast accuracy from the
perspective of tackling the overfitting bottleneck while the MBGD
algorithms improved forecast accuracy from the perspective of
overcoming the instability bottleneck.
4.2. Spatial stability of LSTM models

The spatial stability of these constructed models was assessed.
Taking the RMSE values in testing stages as an example, Fig. 5
showed the improvement rates of the DM-LSTM3 model over the
SM-LSTM model in regional and site-specific multi-step-ahead
forecasting of PM2.5, PM10 and NOx concentrations at horizons tþ1
up to tþ4 at five monitoring stations in Taipei City, respectively. The
results clearly showed the following findings.

1) The DM-LSTM3 model integrated with three deep learning al-
gorithms produced the best performance not only on multi-



Fig. 5. Improvement rates (*RMSE (mg/m3)) of the DM-LSTM3 model over the SM-
LSTM model in the testing stages of the multi-step-ahead forecasting models for
PM2.5, PM10 and NOx, respectively.�Improvement rate in RMSE ¼
ðRMSEfSM LSTMg�RMSEfDM LSTM3g Þ

RMSEfSM LSTMg � 100%
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step-ahead forecasting but also on multi-output forecasting. For
instance, for PM2.5, PM10 and NOx at horizon tþ4, the values of
RMSE were 9.31 mg/m3, 10.62 mg/m3 and 12.17 ppb accordingly
while the Gbench values were 0.83, 0.81 and 0.82 accordingly
(Table 3). It was noted that the improvement rates in RMSE
significantly increased at time steps tþ3 and t þ4 (Fig. 5). The
results demonstrated that the proposed M-LSTM3 model could
provide reliable and accurate regional multi-step-ahead air
quality forecasts because it adequately considered the under-
lying non-linear spatial relationships among five air quality
monitoring stations to effectively adjust synaptic weights.
Table 3
Performance of (RMSE& Gbench) in the testing stages of the multi-step-ahead forecasting m
LSTM3 model in comparison with the SM-LSTM model).

Indicator Horizon PM2.5

SM-LSTM DM-LSTM3

RMSEa tþ1 4.59 4.49
tþ2 5.74 5.40
tþ3 7.37 6.70
tþ4 10.70 9.31

Gbench tþ1 0.93 0.97
tþ2 0.88 0.92
tþ3 0.82 0.87
tþ4 0.72 0.83

a Units of RMSE for PM2.5, PM10 and NOx concentrations are mg/m3, mg/m3, ppb, respe
2) For each air quality monitoring station, the DM-LSTM3 model
also produced the best testing performance of all the cases
regarding the improvement rates in RMSE. It appeared that the
DM-LSTM3 model produced much smaller RMSE values than
the SM-LSTM model did in the testing stage. The DM-LSTM3
model performed significantly better at traffic stations (A1 and
A2) while slightly better at general stations (A3, and A4) and the
park station (A5), as compared to the SM-LSTM model. In
addition, it was an interesting finding that the improvement
rates in RMSE significantly increased from tþ3 to tþ4 at all
stations. Taking horizon tþ4 for example, the improvement
rates in RMSE for PM10, PM2.5 and NOx forecasts reached 16.11%,
19.79% and 22.56% at Station A1, respectively, but reduced to
7.30%, 5.69% and 5.73% at Station A5, respectively. In other
words, the proposed DM-LSTM3model could make more stable
and accurate multi-step-ahead forecasts through identifying the
heterogeneities among different air quality monitoring stations.
This could be because the correlation between air quality con-
centrations and traffic stations stemmed not only from traffic
volumes but also from meteorological factors (e.g., rainfall and
wind speed), while the correlation air quality concentrations
and between general stations stemmed only from meteorolog-
ical factors in the perspective of spatial relationship. Regarding
the Kendall tau correlation for PM2.5, PM10 and NOx, their cor-
relation values with traffic stations (coefficients¼ 0.87, 0.82 and
0.92, respectively) were higher than those with the other sta-
tions (average coefficients¼ 0.73, 0.65 and 0.55, respectively).
Therefore, the DM-LSTM3 model performed the best at traffic
stations. The results indicated that the deep learning multi-
output LSTM neural network model utilized the architecture
of multiple ð� 2Þ hidden layers to capture the inherent features
of data layer-by-layer without prior knowledge and thus per-
formedwell in regional multi-step-ahead air quality forecasting.

From the perspective of spatial stability, the DM-LSTM model
was very beneficial to regional air quality forecasting since the
proposed deep learning-based multi-output data-driven model
hybriding three deep learning algorithms could enhance model
reliability and forecast accuracy.
4.3. Temporal stability of LSTM models

Next, the temporal stability of these constructed models was
evaluated. Table 4 presented the improvement rates of the DM-
LSTM3 model over the SM-LSTM model in terms of RMSE for
regional multi-step-ahead air quality (PM2.5, PM10, and NOx) fore-
casts in four seasons. Several findings were found and expressed as
follows. At a regional scale (Taipei City), the DM-LSTM3 model had
the best performance in four seasons. It was noted that for horizons
odels for PM2.5, PM10 and NOx at horizons from tþ 1 to tþ 4 in Taipei City (the DM-

PM10 NOx

SM-LSTM DM-LSTM3 SM-LSTM DM-LSTM3

5.55 5.43 6.75 6.57
7.08 6.62 8.05 7.48
10.05 9.26 11.07 10.04
11.99 10.62 14.13 12.16
0.92 0.95 0.91 0.95
0.87 0.91 0.86 0.90
0.81 0.85 0.82 0.87
0.73 0.81 0.72 0.82

ctively.



Table 4
Improvement rates of seasonal performance (Root-Mean-Square-Error, RMSE) in the
testing stages of themulti-step-ahead forecastingmodels for PM2.5, PM10 and NOx at
horizons from t þ 1 up to t þ 4 in Taipei City (the DM-LSTM3 model in comparison
with the SM-LSTM model).

Season Horizon Improvement rate (%)a of RMSEb

PM2.5 PM10 NOx

Spring tþ1 2.31 1.77 1.86
tþ2 8.85 3.87 4.82
tþ3 9.12 4.37 5.22
tþ4 14.24 9.08 5.73

Summer tþ1 2.65 2.69 3.47
tþ2 12.57 8.45 8.99
tþ3 18.22 13.92 13.16
tþ4 22.88 16.11 19.74

Autumn tþ1 2.49 2.08 3.35
tþ2 10.56 9.29 9.11
tþ3 12.71 10.43 11.25
tþ4 17.42 15.47 17.76

Winter tþ1 1.76 2.16 2.34
tþ2 8.75 6.52 6.05
tþ3 8.68 7.90 8.21
tþ4 10.18 11.19 11.09

a Improvement rate in RMSE ¼ ðRMSEfSM LSTMg � RMSEfDM LSTM3gÞ
RMSEfSM LSTMg � 100%

b Units of RMSE for PM2.5, PM10 and NOx concentrations are mg/m3, mg/m3, ppb,
respectively.
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tþ3 and tþ4, the DM-LSTM3 model performed much more excel-
lently in summer and autumn while slightly better in spring and
winter, as compared to the SM-LSTM model. In addition, it was an
interesting finding that the improvement rates in RMSE signifi-
cantly increased from horizon tþ1 up to horizon tþ4 in all seasons.
Taking horizon tþ4 for example, the improvement rates in RMSE
for PM2.5, PM10 and NOx forecasting reached 22.88%, 16.11% and
19.74% in summer, respectively, but reduced to (only) 10.18%, 11.19%
and 11.09% in winter, respectively. The reason was that the mete-
orological relationships with air quality in summer and autumn
(average Kendall tau coefficient for meteorological factors¼ 0.75)
was stronger than those in spring and winter (average Kendall tau
coefficient for meteorological factors¼ 0.62). Therefore, the stron-
ger correlation between air quality monitoring stations was
considered as a trigger to enhance the forecast performance of the
DM-LSTM3model. In short, these findings were also very beneficial
to data-driven modellers because the proposed deep learning-
based multi-output LSTM neural network model could provide
accurate and reliable regional multi-step-ahead air quality fore-
casts in four seasons, according to the temporal stability compari-
son between SM-LSTM and DM-LSTM3 models.

Finally, to clearly distinguish the predictability between SM-
LSTM and DM-LSTM3 models, an air pollution event with its
maximal PM2.5, PM10 and NOx concentrations higher than 150 mg/
m3, 200 mg/m3 and 150 ppb, respectively, at a traffic station (A2,
San-Chong) was selected to test both models through assessing the
goodness-of-fit between observations and forecasts at horizon tþ4,
as shown in Fig. 6. The results revealed that the DM-LSTM3 model
was able to well forecast air quality at horizon tþ4, whereas the
SM-LSTM model failed to forecast accurately due to obvious time-
lag phenomena and larger gaps between observations and fore-
casts. It appeared that the developed DM-LSTM model could trace
the trails of air quality events, significantly mitigate time-lag ef-
fects, as well as make much accurate and reliable regional multi-
step-ahead air quality forecasts.

In summary, regional air quality frequently interacts with
intensive human activities, traffic loads and commercial trading in
cities with fast urban development like Taipei City. In this study, air
quality monitoring stations A1 and A2 are traffic stations
representative of traffic loads for monitoring the primary air
pollutantmechanism. Air quality monitoring stations A3 and A4 are
general stations representative of human activities and commercial
trading for monitoring the secondary air pollutant mechanism. Air
quality monitoring station A5 is a park station representative of
natural situations with less human intervention. From the
perspective of monitoring functions and spatial distribution, these
five air quality monitoring stations are typical and representative
for regional air quality of Taipei City. Besides, epidemiological
research pointed out that exposure to PM2.5, PM10, and NOx could
result in air pollution-related diseases, which implied the impor-
tance of air quality forecasting in environmental management
decision-making and prevention from serious air pollution-related
accidents. However, traditional methods were used mainly to
establish the site-specific data-driven model for each individual air
quality monitoring station. It would generally be more promising
for multi-output data-driven models to extract the underlying
nonlinear interrelationship among output variables and improve
regional forecast accuracy. Nevertheless, multi-output air quality
forecasting increased modelling difficulty when SNN models were
implemented. Bearing this in mind as a motivation, the innovative
nature of this study was indebted to: the hybrid of the LSTM and
three state-of-the-art deep learning algorithms for achieving ac-
curate regional forecasts at different horizons through overcoming
model instability and overfitting; and its application for the first
time to regional multi-step-ahead air quality forecasting. In com-
parison with similar studies, such as the single-output data-driven
techniques (Prasad et al., 2016; Yeganeh et al., 2018; Nieto et al.,
2018) and multi-output data-driven techniques (Nguyen et al.,
2012; Li et al., 2016), the main findings of this study were in the
best interests of the goal to make the Earth a better place to live and
were explored on the grounds that: (1) the proposed DM-LSTM
model could effectively increase the accuracy of regional multi-
step-ahead air-quality forecasts through tackling error accumula-
tion and propagation commonly encountered in regional fore-
casting; and (2) the proposed DM-LSTM model could be effectively
applied not only to modelling the heterogeneities in different air
pollutant-generating mechanisms (e.g., primary and secondary
mechanisms, and natural situations) but also to mapping the het-
erogeneous air pollutants onto different seasons by utilizing DNNs
to capture the inherent features of the data layer-by-layer without
prior knowledge for describing the potentially non-linear inter-
relationships among PM2.5, PM10 and NOx monitoring stations.
Consequently, the proposed DM-LSTM model equipped with three
deep learning algorithms proved to be spatio-temporally stable and
was considered themost suitable for regional air quality forecasting
at different lead times.

5. Conclusion

People across development cities like Taipei City undergo a great
possibility of exposure to high-level invasion of air pollutants. Thus,
accurate and reliable regional multi-step-ahead air quality fore-
casting is very crucial and beneficial to reduce health risks caused
by ambient air pollution. In this paper, a deep learning-basedmulti-
output LSTM neural network model (DM-LSTM) equipped with
three deep learning algorithms was first proposed for regional
multi-step-ahead air quality (PM2.5, PM10 and NOx) forecasting. Its
capability of efficient learning and accurate forecasting was tested
and verified at five air quality monitoring stations in Taipei City. The
Shallow Multi-output LSTM model (SM-LSTM) was implemented
for comparative analysis.

The results of regional air quality (PM2.5, PM10, and NOx) fore-
casts demonstrated that the proposed DM-LSTM model performed
prominently than the SM-LSTM model in multi-step-ahead
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Fig. 6. PM2.5, PM10 and NOx forecast results at horizon t þ 4 at traffic station A2 (San-Chong) using SM-LSTM and DM-LSTM3 models. The highest-peaks of PM2.5, PM10 and NOx

concentrations in the testing stages exceed 150 mg/m3, 200 mg/m3 and 150 ppb, respectively.
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forecasting for all the cases, with smaller RMSE (improvement rates
ranged from 2.18% to 13.91%, Fig. 5) and larger Gbench values
(improvement rates ranged from 3.26% to 15.28%, Table 3) for the
Taipei City. It showed that the proposed DM-LSTM model that
adequately extracted underlying non-linear spatial relationships
among five air quality monitoring stations could effectively adjust
synaptic weights and provide reliable and accurate regional multi-
step-ahead forecasts on PM2.5, PM10, and NOx. When assessing the
regional air quality forecast models established for Taipei City, the
proposed DM-LSTM model could significantly mitigate time-lag
phenomena and solve the overfitting problem. In contrast, the
SM-LSTM model produced an inferior performance at all horizons,
especially tþ3 and tþ4, in both training and testing stages. It
implied that the SM-LSTMmodel demanded for more sophisticated
techniques, such as deep learning algorithms with two or more
hidden layers, to improve model stability and generalizability at
spatio-temporal scales. The developed deep learning-based multi-
output LSTM neural network model (DM-LSTM) could effectively
capture the heterogeneities in different air pollutant-generating
mechanisms (e.g., primary and secondary mechanisms, and natu-
ral situations) and adequately map the heterogeneous air pollut-
ants onto different seasons. Therefore, the DM-LSTM model
incorporated with three deep learning algorithms could provide
early forecasting and warming on regional air quality for reducing
health risks associated with outdoor activities.
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Appendix A

Original Long Short-Term Memory (LSTM) unit

The LSTM unit is composed of six parts, including input block,
three gates (input, forget and output gates), self-looped cell as well
as output block. The equations shown below describe how an LSTM
unit is updated at every time step t.
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(1) The input block is used to produce current memory infor-
mation ð~CtÞ by combining the model input ðxtÞ with the
output of the previous state ðht�1Þ.

~Ct ¼ tanhðWcxt þ Ucht�1 þ bcÞ (1)

where tanh is a hyperbolic tangent function. Wc is the weight for
the input of the current state in the input block. Uc is the weight for
the output of the previous state in the input block. bc is the bias in
the input block.

(2) The input gate ðitÞ is able to decide what information to add
to the current cell state by learning from the output of the
previous state ðht�1Þ and the input of the current state ðxtÞ.

it ¼ sðWixt þ Uiht�1 þ biÞ (2)

where s is a sigmoid transfer function. Wi is the weight for the
input of the current state in the input gate. Ui is the weight for the
output of the previous state in the input gate. bi is the bias in the
input gate.

(3) The forget gate ðftÞ can decide what information to remove
from the current cell state by learning from the output of the
previous state ðht�1Þ and the input of the current state ðxtÞ.

ft ¼ s
�
Wf xt þ Ufht�1 þ bf

�
(3)

where Wf is the weight for the input of the current state in the
forget gate. Uf is the weight for the output of the previous state in
the forget gate. bf is the bias in the forget gate.

(4) The self-looped cell ðCtÞ can create an update for the previous
self-looped cell state ðCt�1Þ by combining the information of
the input and forget gates with current input block ð~CtÞ.

Ct ¼ it*~Ct þ ft*Ct�1 (4)
(5) The output gate ðotÞ can decide the output of the self-
recurrent cell. The tanh is utilized to transform the self-
looped cell state ðCtÞ to ensure that the value falls within
[-1,1] and the transformed result is multiplied by the value of
the output gate, which produces the current output state
ðhtÞ.

ot ¼ sðWoxt þ Uoht�1 þ VoCt þ boÞ (5a)

ht ¼ ot�tanhðCtÞ (5b)

where Wo is the weight for the input of the current state in the
output gate. Uo is the weight for the output of the previous state in
the output gate. Vo is the weight for the self-recurrent cell state in
the output gate. bo is the bias in the output gate.

(6) The output block is used to compute the output of the LSTM
unit, which is considered as the algebraic sum of the output
gate.

yðtÞ ¼ Wyht þ by (6)

where yðtÞ is the output of the LSTM unit. Wo is the weight for the
current output state. by is the bias in the output block.
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